1,008,229 research outputs found
Causal Relativistic Fluid Dynamics
We derive causal relativistic fluid dynamical equations from the relaxation
model of kinetic theory as in a procedure previously applied in the case of
non-relativistic rarefied gases. By treating space and time on an equal footing
and avoiding the iterative steps of the conventional Chapman-Enskog ---
CE---method, we are able to derive causal equations in the first order of the
expansion in terms of the mean flight time of the particles. This is in
contrast to what is found using the CE approach. We illustrate the general
results with the example of a gas of identical ultrarelativistic particles such
as photons under the assumptions of homogeneity and isotropy. When we couple
the fluid dynamical equations to Einstein's equation we find, in addition to
the geometry-driven expanding solution of the FRW model, a second,
matter-driven nonequilibrium solution to the equations. In only the second
solution, entropy is produced at a significant rate.Comment: 23 pages (CQG, in press
- …
