582,663 research outputs found
Electromagnetic flow rate meter
A liquid metal, whose flow rate is to be determined, is directed through a chamber made of electrically-insulating material on which there is impressed a magnetic field perpendicular to the direction of flow of the liquid metal. The magnetic field is made to increase in strength in a downstream direction of the flow of liquid metal. At least a pair of electrodes are disposed in the chamber traversely and perpendicular to the direction of flow and an ammeter is connected between the electrodes. Electrodes may be disposed in the top or the bottom of the chamber and each may be segmented. Oppositely disposed electrodes may be used with at least one dividing wall extending from each electrode to cause reversal of the direction of flow of the liquid metal. The magnetic field may be provided by electromagnets or permanent magnets such as shaded pole permanent magnets
Fluid flow meter with comparator reference means Patent
Photometric flow meter with comparator reference mean
<renal and vascular changes produced by weightlessness for the purpose of defining and verifying an experiment suitable for use in a biosatellite< progress report
Blood flow measured by electromagnetic flow meter to determine cardiac outpu
Methods for Determining Blood Flow Through Intact Vessels of Experimental Animals Under Conditions of Gravitational Stress and in Extra-terrestrial Space Capsules Final Report, 1 Nov. 1960 - 31 Dec. 1964
Electromagnetic blood flow meter to determine blood flow through intact vessels of test animals in gravitational stress and in extraterrestrial space capsule
A Cavitation Susceptability Meter with Optical Cavitation Monitoring-Part One: Design Concepts
This work is concerned with the design of a Cavitation Susceptibility Meter based on the use of a venturi tube for the measurement of the active cavitation nuclei concentration in water samples as a function of the applied tension. The operation of the Cavitation Susceptibility Meter is analyzed and the main considerations leading to the proposed design are illustrated and critically discussed. The results of this analysis indicate that the operational range is mainly limited by nuclei interference, flow separation and saturation (choking), and suggest to develop a Cavitation Susceptibility Meter where; (1) the flow possesses a laminar potential core throughout the venturi throat section in all operational conditions; (b) the pressure at the venturi throat is determined from the upstream pressure and the local flow velocity; (c) the detection of cavitation and the measurement of the flow velocity are carried out optically by means of a Laser Doppler Velocimeter; (d) a custom-made electronic Signal Processor incorporating a frequency counter is used for real time data generation and temporary storage; (e) a computerized system performs the final acquisition and reduction of the data
Wireless Water Flow Meter Network in the Great Bay
The Oyster Restoration Program alongside the New Hampshire chapter of the Nature Conservancy is working towards developing new oyster beds throughout the Great Bay. Sedimentation is proving to be a vast problem by covering up the beds before they have a chance to grow to a healthy level. The many rivers entering the Great Bay are bringing the sediments from all over the region and limiting the ability of the program to develop the new beds. They need a way to measure the sedimentation rate, by measuring the flow rate of the rivers over a single tidal cycle in various locations throughout the bay. This is done simply by the design of a wireless water flow meter network. Using a Price Meter as the measurement tool and an Arduino UNO to organize the data, the Oyster Restoration Program can monitor the characteristics of the locations to gain a better understanding of the location as a potential site for a new oyster bed. The design of an self contained system to extract and store the data to be collected is essential to speed up the process of monitoring these locations, which the device developed here will do
Remote semi-continuous flow rate logging seepage meter
The movement of groundwater and its associated solutes from upland regions was implicated in the degradation of receiving surface water bodies. Current efforts to directly measure this influx of water incorporate manually operated seepage meters which are hindered by severe limitations. A prototype seepage meter was developed by NASA Langley Research Center and Virginia Polytechnic Institute and State University that will allow for the semi-continuous collection and data logging of seepage flux across the sediment water interface. The meter is designed to operate at depths to 40 meters, and alleviate or minimize all disadvantages associated with traditional methods while remaining cost effective. The unit was designed to operate independently for time periods on the order of weeks with adjustable sample sequences depending upon hydrologic conditions. When used in conjunction with commercially available pressure transducers, this seepage meter allows for correlations to be made between groundwater discharge and tidal/sea state conditions in coastal areas. Field data from the Chesapeake Bay and Florida Bay systems are presented
Pengujian Orifice Flow Meter Dengan Kapasitas Aliran Rendah
Orifice flow meter is used in many laboratory and industrial application due because of its simple design and low cost. The present research investigated an orifice flow meter operated in relatively low flow rate. Orifice plate is a metal plate, 10 mm width provided with bevel at inlet section. The diameter ratios (β) are 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8, respectively. The experiment used water with flowrate range having Reynolds number between 6827,55 and 8004,72. The fluid is flown through the orifice plate. Pressure taps are used to measure pressure at upstream and downstream of the orifice plate. The actual capacity is directly measured at an outlet reservoir; while the theoretical capacity is calculated using modified Bernoulli equation with diameter ratio (β) within the equation. The results showed that the irrecoverable pressure drop decreased with the increase of flow capacity and the diameter ratio. The discharge coefficient of the orifice flowmeter ranged between 0.3 and 1.3
A continuous physiological data collector
COP-DAC system utilizes oxygen and carbon dioxide analyzers, gas-flow meter, gas breathe-through system, analog computer, and data storage system to provide actual rather than average measurements of physiological and metabolic functions
- …
