16,356 research outputs found

    Ecological spectrums of heterotrophic flagellates (protista) in water bodies of ukrainian polissya area

    Get PDF
    Dependence of 26 heterotrophic flagellate species development in central part of Ukrainian Polissya area from operating pH and concentrations of dissolved organic matter and oxygen in the waters is considered. Narrowing of existence spectrums in certain types of water body characteristic for some species of heterotrophic flagellates is stated; this peculiarity is strongly expressed in the bogs where specific complex of hydrochemical conditions to have a place

    The diversity and ecological role of protozoa in fresh waters

    Get PDF
    Protozoa feed on and regulate the abundance of most types of aquatic microorganisms, and they are an integral part of all aquatic microbial food webs. Being so small, aerobic protozoa thrive at low oxygen tensions, where they feed (largely unaffected by metazoan grazing) on the abundance of other microorganisms. In anaerobic environments, they are the only phagotrophic organisms, and they live in unique symbiotic consortia with methanogens, sulphate reducers and non-sulphur purple bacteria. The number of extant species of protozoa may be quite modest (the global number of ciliate species is estimated at 3000), and most of them probably have cosmopolitan distributions. This will undoubtedly make it easier to carry out further tasks, e.g. understanding the role of protozoan species diversity in the natural environment

    Are marine diatoms favoured by high Si:N ratios?

    Get PDF
    Competition experiments were performed first with 4, then with 11 species of marine phytoplankton at various ratios of si1icate:nitrate and various light intensities. Diatoms became dominant at Si:N ratios >25:1 while flagellates were the superior competitors at lower ratios. The light supply did not influence the competitive position of diatoms and non-siliceous flagellates in general, while it was important in determining the outcome of competition at the species level. In the 11 species expenments, Stephanopyxis palmenana was the dominant diatom at high light intensities. It shared dominance with Lauderia annulata at medium and low light intensities and high Si.N ratios. Pseudonitzschia pungens was the dominant diatom at low light intensities and relatively low Si:N ratios. The green alga Dunaliella tertiolecta was the dominant flagellate at high light intensities, while at low light intensities the prymnesiophycean Chrysochromulina polylepis and the cryptophyte Rhodomonas sp. were also important

    Responses in bacterial community structure to waste nutrients from aquaculture: an in situ microcosm experiment in a Chilean fjord

    Get PDF
    Indexación: Web of Science; Scopus.Chilean salmon farms release inorganic nutrients excreted by the fish into the surrounding water in Patagonian fjords. The objective of this experiment from the Comau Fjord (42.2 degrees S) in southern Chile was to study how increased input of ammonium (NH4) and phosphate (PO4) from salmon farms might affect the community structure of bacteria in surface waters where fish farms are located. We used microcosms (35 l) with NH4-N and PO4-P added to the natural seawater in a gradient of nutrient-loading rates, with the same N: P ratio as in salmon aquaculture effluents. Additionally, we measured bacterial community structure at different depths in the Comau Fjord to assess the natural variation to compare with our experiment. We used denaturing gradient gel electrophoresis (DGGE) to create 16S rDNA fingerprints of the bacterial communities and monitored biological and environmental variables (chlorophyll a, inorganic nutrients, pH, microbial abundance). The nutrient- loading rate had a significant impact on the bacterial community structure, and the community dissimilarity between low and high nutrient additions was up to 78%. Of the measured environmental variables, phytoplankton abundance and increased pH from photosynthesis had a significant effect. We observed no significant changes in bacterial diversity, which remained at the same level as in the unmanipulated community. Thus, the bacterial community of the fjord was not resistant, but resilient within the time frame and nutrient gradient of our experiment.http://www.int-res.com/abstracts/aei/v9/p21-32

    The feeding ecology of some zooplankters that are important prey items of larval fish

    Get PDF
    Diets of 76 species of fish larvae from most oceans of the world were inventoried on the basis of information in 40 published studies. Although certaln geographlc, size- and taxon-specific patterns were apparent, certain zooplankton taxa appeared in the diets of larvae of a variety of fish species in numerous localities. Included were six genera of calanoid copepods (Acartia, Calanus, Centropages, Paracalanus, Pseudocaianus, Temora), three genera of cyclopoid copepods (Corycaeus, Oilhona, Oncata), harpacticoid copepods, copepod nauplii, tintinoids, cladocerans of the genera Evadne and Podon, barnacle nauplii, gastropod larvae, pteropods of the genus Limacina, and appendicularians. Literature on feeding habits of these zooplankters reveals that most of the copepods are omnivorous, feeding upon both phytoplankton and other zooplankton. Some taxa, such as Calanus, Paracalanus, Pseudocalanus, and copepod nauplii appear to be primarily herbivorous, while others, such as Acartia, Centropages, Temora, and cyclopoids exhibit broad omnivory or carnivory. The noncopepod zooplankters are primarily filter-feeders upon pbytoplankton and/or bacterioplankton. Despite the importance of zooplankters in larval fish food webs, spectic knowledge of the feeding ecology of many taxa is poor. Further, much present knowledge comes only from laboratory investigations that may not accurately portray feeding habits of zooplankters in nature. Lack of knowledge of the feeding ecology of many abundant zooplankters, which are also important in larval fish food webs, precludes realistic understanding of pelagic ecosystem dynamics. (PDF file contains 34 pages.

    Hypertrophic phytoplankton: an overview

    Get PDF
    An overview is provided of studies on hypertrophic phytoplankton in order to explore the subject and to suggest uncovered areas of research in this increasingly important theme. The authors restrict themselves to stagnant environments, using a community criterion to define hypertrophic environments. They are defined as those whose yearly average of phytoplankton chlorophyll is equal to or higher than 100 mg per cubic metre of water. The paper deals with species composition, diversity, biomass, primary production, losses and seasonal succession of hypertrophic phytoplankton. Other topics, such as population dynamics and ecophysiological issues, either lack enough information to be considered or are well known, e.g. Microcystis and Oscillatoria ecophysiology

    Snow as a habitat for microorganisms

    Get PDF
    There are three major habitats involving ice and snow, and the microorganisms studied from these habitats are most eukaryotic. Sea ice is inhabited by algae called diatoms, glacial ice has sparse populations of green algai cal desmids, and the temporary and permanent snows in mountainous regions and high latitudes are inhabited mostly by green algal flagellates. The life cycle of green algal flagellates is summarized by discussing the effects of light, temperature, nutrients, and snow melts. Specific examples of optimal conditions and environmental effects for various snow algae are given. It is not likely that the eukaryotic snow algae presented are candidated for life on the planet Mars. Evolutionally, eukaryotic cells as know on Earth may not have had the opportunity to develop on Mars (if life evolved at all on Mars) since eukaryotes did not appear on Earth until almost two billion years after the first prokaryotic organisms. However, the snow/ice ecosystems on Earth present themselves as extreme habitats were there is evidence of prokaryotic life (eubacteria and cyanbacteria) of which literally nothing is known. Any future surveillances of extant and/or extinct life on Mars should include probes (if not landing sites) to investigate sites of concentrations of ice water. The possibility of signs of life in Martian polar regions should not be overlooked

    Quantum Mechanics for the Swimming of Micro-Organism in Two Dimensions

    Full text link
    In two dimensional fluid, there are only two classes of swimming ways of micro-organisms, {\it i.e.}, ciliated and flagellated motions. Towards understanding of this fact, we analyze the swimming problem by using w1+w_{1+\infty} and/or W1+W_{1+\infty} algebras. In the study of the relationship between these two algebras, there appear the wave functions expressing the shape of micro-organisms. In order to construct the well-defined quantum mechanics based on W1+W_{1+\infty} algebra and the wave functions, essentially only two different kinds of the definitions are allowed on the hermitian conjugate and the inner products of the wave functions. These two definitions are related with the shapes of ciliates and flagellates. The formulation proposed in this paper using W1+W_{1+\infty} algebra and the wave functions is the quantum mechanics of the fluid dynamics where the stream function plays the role of the Hamiltonian. We also consider the area-preserving algebras which arise in the swimming problem of micro-organisms in the two dimensional fluid. These algebras are larger than the usual w1+w_{1+\infty} and W1+W_{1+\infty} algebras. We give a free field representation of this extended W1+W_{1+\infty} algebra.Comment: OCHA-PP-48, NDA-FP-16, Latex file, 15p

    Thermodynamic Aspects of Flagellar Activity

    Get PDF
    1. The frequencies of the beat of cilia and flagella from various organisms have been determined at temperatures in the range 5-35°C. 2. Values of the activation enthalpy (ΔH{ddagger}, kcal./mole) and activation entropy (ΔS{ddagger}, e.u.) derived from the thermal dependence of frequency show a linear correlation of the form, ΔS{ddagger} = 3.25 ΔH{ddagger}-50.75. 3. The corresponding isokinetic activation free energy is 15.6 kcal./mole. 4. The results support a hypothesis that the breakdown of an ATP-ATPase complex could be the common rate-limiting reaction for flagellar activity. 5. Values of ΔH{ddagger} and ΔS{ddagger} for the decay of length or tension in striated muscles also fall on the same regression line but some smooth muscles show deviations
    corecore