389,855 research outputs found

    Manipulation Robustness of Collaborative Filtering Systems

    Full text link
    A collaborative filtering system recommends to users products that similar users like. Collaborative filtering systems influence purchase decisions, and hence have become targets of manipulation by unscrupulous vendors. We provide theoretical and empirical results demonstrating that while common nearest neighbor algorithms, which are widely used in commercial systems, can be highly susceptible to manipulation, two classes of collaborative filtering algorithms which we refer to as linear and asymptotically linear are relatively robust. These results provide guidance for the design of future collaborative filtering systems

    Synchronized sweep algorithms for scalable scheduling constraints

    Get PDF
    This report introduces a family of synchronized sweep based filtering algorithms for handling scheduling problems involving resource and precedence constraints. The key idea is to filter all constraints of a scheduling problem in a synchronized way in order to scale better. In addition to normal filtering mode, the algorithms can run in greedy mode, in which case they perform a greedy assignment of start and end times. The filtering mode achieves a significant speed-up over the decomposition into independent cumulative and precedence constraints, while the greedy mode can handle up to 1 million tasks with 64 resources constraints and 2 million precedences. These algorithms were implemented in both CHOCO and SICStus

    Content-boosted Matrix Factorization Techniques for Recommender Systems

    Full text link
    Many businesses are using recommender systems for marketing outreach. Recommendation algorithms can be either based on content or driven by collaborative filtering. We study different ways to incorporate content information directly into the matrix factorization approach of collaborative filtering. These content-boosted matrix factorization algorithms not only improve recommendation accuracy, but also provide useful insights about the contents, as well as make recommendations more easily interpretable

    On the Benefits of Non-Canonical Filtering in Publish/Subscribe Systems

    Get PDF
    Current matching approaches in pub/sub systems only allow conjunctive subscriptions. Arbitrary subscriptions have to be transformed into canonical expressions, e.g., DNFs, and need to be treated as several conjunctive subscriptions. This technique is known from database systems and allows us to apply more efficient filtering algorithms. Since pub/sub systems are the contrary to traditional database systems, it is questionable if filtering several canonical subscriptions is the most efficient and scalable way of dealing with arbitrary subscriptions. In this paper we show that our filtering approach supporting arbitrary Boolean subscriptions is more scalable and efficient than current matching algorithms requiring transformations of subscriptions into DNFs
    corecore