418,261 research outputs found
Female rat hippocampal cell density after conditioned place preference
The hippocampus is important for learning tasks, such as conditioned place preference (CPP), which is widely used as a model for studying the reinforcing effects of drugs with dependence liability. Long-term opiate use may produce maladaptive plasticity in the brain structures involved in learning and memory, such as the hippocampus. We investigated the phenomenon of conditioning with morphine on the cell density of female rat hippocampus. Forty-eight female Wistar rats weighing on average 200-250 g were used. Rats were distributed into eight groups. Experimental groups received morphine daily (three days) at different doses (2.5, 5, 7.5 mg/kg) and the control-saline group received normal saline (1 ml/kg), and then the CPP test was performed. Three sham groups received only different doses (2.5, 5, 7.5 mg/kg) of morphine without CPP test. Forty-eight hours after behavioural testing animals were decapitated under chloroform anaesthesia and their brains were fixed, and after tissue processing, slices were stained with cresyl violet for neurons and phosphotungstic acid haematoxylin for astrocytes. The maximum response was obtained with 5 mg/kg of morphine. The density of neurons in CA1 and CA3 areas of hippocampus after injection of morphine and CPP was decreased. The number of astrocytes in different areas of hippocampus was increased after injection of morphine and CPP. It seems that the effective dose was 5 mg/kg, as it led to the CPP. We concluded that both injection of morphine and CPP can decrease the density of neurons and also increase the number of astrocytes in the rat hippocampus
Flutamide-induced hypospadias in rats: A critical assessment.
This paper provides the first detailed description of flutamide-induced hypospadias in the rat based upon wholemount, histologic, three-dimensional reconstruction, scanning electron microscopic, and immunocytochemical analysis. The penile malformations elicited by this potent anti-androgen include a substantial proximal shift in the urethral meatus that clearly conforms to the definition of hypospadias based upon specific morphological criteria for this malformation. Through examination of the normal penile development and flutamide-induced abnormal penile development observed in prenatally oil- and flutamide-treated rats, our analysis provides insights into the morphogenetic mechanism of development of hypospadias. In this regard, a common theme in normal penile development is midline fusion of epithelia followed by removal of the epithelial seam and establishment of midline mesenchymal confluence during development of the penile urethra and prepuce, processes which are impaired as a result of prenatal flutamide treatment. The developmental processes occurring in normal penile development, through comparison with development of female external genitalia and those impaired due to prenatal flutamide treatment, are consistent with critical role of androgen receptors in normal penile development in the rat, and the specific penile abnormalities embodied in flutamide-induced rat hypospadias
USE OF INHALANT ANESTHETICS IN THREE SNAKE SPECIES
Different snake species respond differently to various anesthetic agents. Hence, an anesthetic procedure developed for one species cannot necessarily be safely transferred to another species. The goal of this paper is to summarize our experience using inhalant anesthetics on three snake species, including both procedures that were successful and those we found to be less satisfactory. We found isoflurane delivered with a precision vaporizer to be the best agent to anesthetize black rat snakes (Elaphe o. obsoleta). Sex and mass did not seem to affect induction times in black rat snakes, but larger female rat snakes recovered faster from anesthesia than smaller females. Halothane delivered in the open method provided consistent anesthesia in northern water snakes (Nerodia s. sipedon), although it caused some mortality and should not be used on debilitated patients. Halothane delivered with a precision vaporizer may be used to anesthetize eastern massasauga rattlesnakes (Sistrurus c. catenatus). However, care must be taken to prevent mortality resulting from anesthetic overdose. Sex and mass had no effect on induction and recovery times in the rattlesnakes, but stressed animals require longer induction and recovery times
Pathfinder cells provide a novel therapeutic intervention for acute kidney injury
Pathfinder cells (PCs) are a novel class of adult-derived cells that facilitate functional repair of host tissue. We used rat PCs to demonstrate that they enable the functional mitigation of ischemia reperfusion (I/R) injury in a mouse model of renal damage. Female C57BL/6 mice were subjected to 30 min of renal ischemia and treated with intravenous (i.v.) injection of saline (control) or male rat pancreas-derived PCs in blinded experimentation. Kidney function was assessed 14 days after treatment by measuring serum creatinine (SC) levels. Kidney tissue was assessed by immunohistochemistry (IHC) for markers of cellular damage, proliferation, and senescence (TUNEL, Ki67, p16ink4a, p21). Fluorescence in situ hybridization (FISH) was performed to determine the presence of any rat (i.e., pathfinder) cells in the mouse tissue. PC-treated animals demonstrated superior renal function at day 14 post-I/R, in comparison to saline-treated controls, as measured by SC levels (0.13 mg/dL vs. 0.23 mg/dL, p<0.001). PC-treated kidney tissue expressed significantly lower levels of p16ink4a in comparison to the control group (p=0.009). FISH analysis demonstrated that the overwhelming majority of repaired kidney tissue was mouse in origin. Rat PCs were only detected at a frequency of 0.02%. These data confirm that PCs have the ability to mitigate functional damage to kidney tissue following I/R injury. Kidneys of PC-treated animals showed evidence of improved function and reduced expression of damage markers. The PCs appear to act in a paracrine fashion, stimulating the host tissue to recover functionally, rather than by differentiating into renal cells. This study demonstrates that pancreatic-derived PCs from the adult rat can enable functional repair of renal damage in mice. It validates the use of PCs to regenerate damaged tissues and also offers a novel therapeutic intervention for repair of solid organ damage in situ
Sex-specific computational models of the spontaneously hypertensive rat kidneys: factors affecting nitric oxide bioavailability
Sex-specific
computational models of the spontaneously hypertensive rat kidneys:
factors affecting nitric oxide bioavailability. Am J Physiol Renal
Physiol 313: F174 –F183, 2017. First published March 29, 2017;
doi:10.1152/ajprenal.00482.2016.—The goals of this study were to 1)
develop a computational model of solute transport and oxygenation in
the kidney of the female spontaneously hypertensive rat (SHR), and 2)
apply that model to investigate sex differences in nitric oxide (NO)
levels in SHR and their effects on medullary oxygenation and oxidative stress. To accomplish these goals, we first measured NO synthase
(NOS) 1 and NOS3 protein expression levels in total renal microvessels of male and female SHR. We found that the expression of both
NOS1 and NOS3 is higher in the renal vasculature of females
compared with males. To predict the implications of that finding on
medullary oxygenation and oxidative stress levels, we developed a
detailed computational model of the female SHR kidney. The model
was based on a published male kidney model and represents solute
transport and the biochemical reactions among O2, NO, and superoxide (O2
) in the renal medulla. Model simulations conducted using
both male and female SHR kidney models predicted significant radial
gradients in interstitial fluid oxygen tension (PO2) and NO and O2
concentration in the outer medulla and upper inner medulla. The
models also predicted that increases in endothelial NO-generating
capacity, even when limited to specific vascular segments, may
substantially raise medullary NO and PO2 levels. Other potential sex
differences in SHR, including O2
production rate, are predicted to
significantly impact oxidative stress levels, but effects on NO concentration and PO2 are limited.This research was supported by the National Institute of Diabetes and Digestive and Kidney Diseases Grant R01-DK-106102 to A. T. Layton, and by American Heart Association Grant 14GRNT20480199 to J. C. Sullivan. (R01-DK-106102 - National Institute of Diabetes and Digestive and Kidney Diseases; 14GRNT20480199 - American Heart Association)Accepted manuscrip
Absorbed radiation dosimetry of the D3-specific PET radioligand [18F]FluorTriopride estimated using rodent and nonhuman primate
[(18)F]FluorTriopride ([(18)F]FTP) is a dopamine D(3)-receptor preferring radioligand with potential for investigation of neuropsychiatric disorders including Parkinson disease, dystonia and schizophrenia. Here we estimate human radiation dosimetry for [(18)F]FTP based on the ex-vivo biodistribution in rodents and in vivo distribution in nonhuman primates. Biodistribution data were generated using male and female Sprague-Dawley rats injected with ~370 KBq of [(18)F]FTP and euthanized at 5, 30, 60, 120, and 240 min. Organs of interest were dissected, weighed and assayed for radioactivity content. PET imaging studies were performed in two male and one female macaque fascicularis administered 143-190 MBq of [(18)F]FTP and scanned whole-body in sequential sections. Organ residence times were calculated based on organ time activity curves (TAC) created from regions of Interest. OLINDA/EXM 1.1 was used to estimate human radiation dosimetry based on scaled organ residence times. In the rodent, the highest absorbed radiation dose was the upper large intestines (0.32-0.49 mGy/MBq), with an effective dose of 0.07 mSv/MBq in males and 0.1 mSv/MBq in females. For the nonhuman primate, however, the gallbladder wall was the critical organ (1.81 mGy/MBq), and the effective dose was 0.02 mSv/MBq. The species discrepancy in dosimetry estimates for [(18)F]FTP based on rat and primate data can be attributed to the slower transit of tracer through the hepatobiliary track of the primate compared to the rat, which lacks a gallbladder. Out findings demonstrate that the nonhuman primate model is more appropriate model for estimating human absorbed radiation dosimetry when hepatobiliary excretion plays a major role in radiotracer elimination
Expression profiling of key pathways in rat liver after a one-year feeding trial with transgenic maize MON810
In a recent one-year feeding study, we observed no adverse effects on tissue level in organs of rats fed with the genetically-modified maize MON810. Here, we assessed RNA expression levels of 86 key genes of the apoptosis-, NF-кB-, DNA-damage response (DDR)-, and unfolded-protein response (UPR) pathways by RT-qPCR in the rat liver. Male and female rats were fed either with 33% MON810 (GMO), isogenic- (ISO), or conventional maize (CONV) and RNAs were quantified from eight rats from each of the six feeding groups. Only Birc2 transcript showed a significant (p ≤ 0.05) consistent difference of ≥1.5-fold between the GMO and ISO groups in both sexes. Unsupervised cluster analysis showed a strong separation of male and female rats, but no clustering of the feeding groups. Individual analysis of the pathways did not show any clustering of the male or female feeding groups either, though transcript levels of UPR pathway-associated genes caused some clustering of the male GMO and CONV feeding group samples. These differences were not seen between the GMO and ISO control or within the female cohort. Our data therefore does not support an adverse effect on rat liver RNA expression through the long-term feeding of MON810 compared to isogenic control maize
Different response to epidermal growth factor of hepatocytes in cultures isolated from male or female rat liver. Inhibitor effect of estrogen on binding and mitogenic effect of epidermal growth factor
Deoxyribonucleic acid (DNA) synthesis in hepatocytes isolated from the livers of male and female rats has been compared in monolayer culture. Plating efficiency, DNA and protein content, viability, and morphologic appearance were the same in cultures prepared with hepatocytes isolated from male or female rats. Epidermal growth factor (EGF)-induced DNA synthesis was significantly higher in hepatocytes from male rats than in hepatocytes from female rats. This was the case whether hepatocytes were isolated from normal or partially hepatectomized male or female rats. Hepatocytes isolated from regenerating liver synthesize more DNA than those isolated from normal liver in response to EGF. This increased response to EGF in hepatocytes derived from regenerating liver was relatively the same for male- and female-derived hepatocytes, but the magnitude of the response was considerably higher in male-derived hepatocytes. In contrast, in vivo DNA synthesis in the liver remnant after partial hepatectomy was similar in male and female rats if measured 24 h after the operation. A comparison of EGF binding to male- and female-derived hepatocytes maintained in primary culture indicated a lower number of high-affinity receptors for EGF in the female hepatocytes. The addition of estrogen to primary cultures of hepatocytes isolated from male rats inhibited EGF binding as well as EGF-induced DNA synthesis. Our studies show significant differences in DNA synthesis in response to EGF when male and female hepatocytes are compared in primary culture. The regenerative response after partial hepatectomy, on the other hand, was the same in male and female rats. Thus, our studies indicate that the sex of the donor rat is important when hepatocytes in culture are used for a variety of studies, such as hepatocyte metabolism, induction and control of DNA synthesis, and hepatocarcinogenesis. In addition, our results indicate that caution is advised when inferences are made from in vitro findings for in vivo conditions. © 1987
Sex-dependent influence of endogenous estrogen in pulmonary hypertension
Rationale: The incidence of pulmonary arterial hypertension (PAH) is greater in women suggesting estrogens may play a role in the disease pathogenesis. Experimentally, in males exogenously administered estrogen can protect against PH; however in models that display female susceptibility estrogens may play a causative role.
Objectives: To clarify the influence of endogenous estrogen and gender in PH and assess the therapeutic potential of a clinically available aromatase inhibitor.
Methods: We interrogated the effect of reduced endogenous estrogen in males and females using the aromatase inhibitor, anastrozole, in two models of PH; the hypoxic mouse and Sugen 5416/hypoxic rat. We also determined the effects of gender on pulmonary expression of aromatase in these models and in lungs from PAH patients.
Results: Anastrozole attenuated PH in both models studied, but only in females. To verify this effect was due to reduced estrogenic activity we confirmed that in hypoxic mice inhibition of estrogen receptor alpha also has a therapeutic effect specifically in females. Female rodent lung displays increased aromatase and decreased BMPR2 and Id1 expression compared to male. Anastrozole treatment reversed the impaired BMPR2 pathway in females. Increased aromatase expression was also detected in female human pulmonary artery smooth muscle cells compared to male.
Conclusions: The unique phenotype of female pulmonary arteries facilitates the therapeutic effects of anastrozole in experimental PH confirming a role for endogenous estrogen in the disease pathogenesis in females and suggests aromatase inhibitors may have therapeutic potential
Pharmacological effect of one icv dose of Allopregnanolone in female rat: behavioural profile
We have previously observed that intracerebroventricular allopregnanolone (ALLO) injection produced an anxiolytic effect and inhibited sexual receptivity when the test was performed in a separate manner. Also, ALLO reverts learning deficit in female rats in the hippocampi. To study the behavioral effects of an acute treatment with ALLO in the right lateral ventricle we used two approaches: a- A battery test to analyze the anxiety and mating behavior. And b- The avoidance test and novel object recognition test to evaluate its effect on memory and learning. Ovariectomized rats were injected with estrogen and progesterone. After it ALLO or vehicle were administered into the right lateral ventricle. To reach the objective (a) rats were put in a sequential battery test in the next order: 1-Open field. 2- Plus maze task. 3- Mating behavior. For the aim (b) it was performed a Novel Object Recognition Test and Step-down Inhibitory Avoidance Task. ALLO did not affect locomotors-exploratory behavior. Animals treated with ALLO, spent more time and had more entries into the open arm in a plus maze task and lordosis quotient was lower than in the control group. ALLO increased the latency in step down test and had no effects on discrimination index test in NORT. Here we demonstrated that one pharmacological dose of ALLO in ovariectomized primed rats is enough to generate all changes observed in the battery test. Moreover, the acute treatment with ALLO in lateral ventricle enhanced the memory acquisition in an avoidance task.Fil: Pelegrina, Laura Tatiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Escudero, Carla Gimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Giuliani, Fernando Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: García Menéndez, Sebastián Marcelo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Cabrera Kreiker, Ricardo Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Laconi, Myriam Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; Argentin
- …
