2,081,057 research outputs found

    Improving feature selection algorithms using normalised feature histograms

    Full text link
    The proposed feature selection method builds a histogram of the most stable features from random subsets of a training set and ranks the features based on a classifier based cross-validation. This approach reduces the instability of features obtained by conventional feature selection methods that occur with variation in training data and selection criteria. Classification results on four microarray and three image datasets using three major feature selection criteria and a naive Bayes classifier show considerable improvement over benchmark results

    Feature Selection Library (MATLAB Toolbox)

    Full text link
    Feature Selection Library (FSLib) is a widely applicable MATLAB library for Feature Selection (FS). FS is an essential component of machine learning and data mining which has been studied for many years under many different conditions and in diverse scenarios. These algorithms aim at ranking and selecting a subset of relevant features according to their degrees of relevance, preference, or importance as defined in a specific application. Because feature selection can reduce the amount of features used for training classification models, it alleviates the effect of the curse of dimensionality, speeds up the learning process, improves model's performance, and enhances data understanding. This short report provides an overview of the feature selection algorithms included in the FSLib MATLAB toolbox among filter, embedded, and wrappers methods.Comment: Feature Selection Library (FSLib) 201

    Weighted Heuristic Ensemble of Filters

    Get PDF
    Feature selection has become increasingly important in data mining in recent years due to the rapid increase in the dimensionality of big data. However, the reliability and consistency of feature selection methods (filters) vary considerably on different data and no single filter performs consistently well under various conditions. Therefore, feature selection ensemble has been investigated recently to provide more reliable and effective results than any individual one but all the existing feature selection ensemble treat the feature selection methods equally regardless of their performance. In this paper, we present a novel framework which applies weighted feature selection ensemble through proposing a systemic way of adding different weights to the feature selection methods-filters. Also, we investigate how to determine the appropriate weight for each filter in an ensemble. Experiments based on ten benchmark datasets show that theoretically and intuitively adding more weight to ‘good filters’ should lead to better results but in reality it is very uncertain. This assumption was found to be correct for some examples in our experiment. However, for other situations, filters which had been assumed to perform well showed bad performance leading to even worse results. Therefore adding weight to filters might not achieve much in accuracy terms, in addition to increasing complexity, time consumption and clearly decreasing the stability

    Online Unsupervised Multi-view Feature Selection

    Full text link
    In the era of big data, it is becoming common to have data with multiple modalities or coming from multiple sources, known as "multi-view data". Multi-view data are usually unlabeled and come from high-dimensional spaces (such as language vocabularies), unsupervised multi-view feature selection is crucial to many applications. However, it is nontrivial due to the following challenges. First, there are too many instances or the feature dimensionality is too large. Thus, the data may not fit in memory. How to select useful features with limited memory space? Second, how to select features from streaming data and handles the concept drift? Third, how to leverage the consistent and complementary information from different views to improve the feature selection in the situation when the data are too big or come in as streams? To the best of our knowledge, none of the previous works can solve all the challenges simultaneously. In this paper, we propose an Online unsupervised Multi-View Feature Selection, OMVFS, which deals with large-scale/streaming multi-view data in an online fashion. OMVFS embeds unsupervised feature selection into a clustering algorithm via NMF with sparse learning. It further incorporates the graph regularization to preserve the local structure information and help select discriminative features. Instead of storing all the historical data, OMVFS processes the multi-view data chunk by chunk and aggregates all the necessary information into several small matrices. By using the buffering technique, the proposed OMVFS can reduce the computational and storage cost while taking advantage of the structure information. Furthermore, OMVFS can capture the concept drifts in the data streams. Extensive experiments on four real-world datasets show the effectiveness and efficiency of the proposed OMVFS method. More importantly, OMVFS is about 100 times faster than the off-line methods
    corecore