2,004,807 research outputs found
Visual Causal Feature Learning
We provide a rigorous definition of the visual cause of a behavior that is
broadly applicable to the visually driven behavior in humans, animals, neurons,
robots and other perceiving systems. Our framework generalizes standard
accounts of causal learning to settings in which the causal variables need to
be constructed from micro-variables. We prove the Causal Coarsening Theorem,
which allows us to gain causal knowledge from observational data with minimal
experimental effort. The theorem provides a connection to standard inference
techniques in machine learning that identify features of an image that
correlate with, but may not cause, the target behavior. Finally, we propose an
active learning scheme to learn a manipulator function that performs optimal
manipulations on the image to automatically identify the visual cause of a
target behavior. We illustrate our inference and learning algorithms in
experiments based on both synthetic and real data.Comment: Accepted at UAI 201
Feature learning in feature-sample networks using multi-objective optimization
Data and knowledge representation are fundamental concepts in machine
learning. The quality of the representation impacts the performance of the
learning model directly. Feature learning transforms or enhances raw data to
structures that are effectively exploited by those models. In recent years,
several works have been using complex networks for data representation and
analysis. However, no feature learning method has been proposed for such
category of techniques. Here, we present an unsupervised feature learning
mechanism that works on datasets with binary features. First, the dataset is
mapped into a feature--sample network. Then, a multi-objective optimization
process selects a set of new vertices to produce an enhanced version of the
network. The new features depend on a nonlinear function of a combination of
preexisting features. Effectively, the process projects the input data into a
higher-dimensional space. To solve the optimization problem, we design two
metaheuristics based on the lexicographic genetic algorithm and the improved
strength Pareto evolutionary algorithm (SPEA2). We show that the enhanced
network contains more information and can be exploited to improve the
performance of machine learning methods. The advantages and disadvantages of
each optimization strategy are discussed.Comment: 7 pages, 4 figure
Pooling-Invariant Image Feature Learning
Unsupervised dictionary learning has been a key component in state-of-the-art
computer vision recognition architectures. While highly effective methods exist
for patch-based dictionary learning, these methods may learn redundant features
after the pooling stage in a given early vision architecture. In this paper, we
offer a novel dictionary learning scheme to efficiently take into account the
invariance of learned features after the spatial pooling stage. The algorithm
is built on simple clustering, and thus enjoys efficiency and scalability. We
discuss the underlying mechanism that justifies the use of clustering
algorithms, and empirically show that the algorithm finds better dictionaries
than patch-based methods with the same dictionary size
Collaborative Feature Learning from Social Media
Image feature representation plays an essential role in image recognition and
related tasks. The current state-of-the-art feature learning paradigm is
supervised learning from labeled data. However, this paradigm requires
large-scale category labels, which limits its applicability to domains where
labels are hard to obtain. In this paper, we propose a new data-driven feature
learning paradigm which does not rely on category labels. Instead, we learn
from user behavior data collected on social media. Concretely, we use the image
relationship discovered in the latent space from the user behavior data to
guide the image feature learning. We collect a large-scale image and user
behavior dataset from Behance.net. The dataset consists of 1.9 million images
and over 300 million view records from 1.9 million users. We validate our
feature learning paradigm on this dataset and find that the learned feature
significantly outperforms the state-of-the-art image features in learning
better image similarities. We also show that the learned feature performs
competitively on various recognition benchmarks
Constrained Deep Transfer Feature Learning and its Applications
Feature learning with deep models has achieved impressive results for both
data representation and classification for various vision tasks. Deep feature
learning, however, typically requires a large amount of training data, which
may not be feasible for some application domains. Transfer learning can be one
of the approaches to alleviate this problem by transferring data from data-rich
source domain to data-scarce target domain. Existing transfer learning methods
typically perform one-shot transfer learning and often ignore the specific
properties that the transferred data must satisfy. To address these issues, we
introduce a constrained deep transfer feature learning method to perform
simultaneous transfer learning and feature learning by performing transfer
learning in a progressively improving feature space iteratively in order to
better narrow the gap between the target domain and the source domain for
effective transfer of the data from the source domain to target domain.
Furthermore, we propose to exploit the target domain knowledge and incorporate
such prior knowledge as a constraint during transfer learning to ensure that
the transferred data satisfies certain properties of the target domain. To
demonstrate the effectiveness of the proposed constrained deep transfer feature
learning method, we apply it to thermal feature learning for eye detection by
transferring from the visible domain. We also applied the proposed method for
cross-view facial expression recognition as a second application. The
experimental results demonstrate the effectiveness of the proposed method for
both applications.Comment: International Conference on Computer Vision and Pattern Recognition,
201
Improve the performance of transfer learning without fine-tuning using dissimilarity-based multi-view learning for breast cancer histology images
Breast cancer is one of the most common types of cancer and leading
cancer-related death causes for women. In the context of ICIAR 2018 Grand
Challenge on Breast Cancer Histology Images, we compare one handcrafted feature
extractor and five transfer learning feature extractors based on deep learning.
We find out that the deep learning networks pretrained on ImageNet have better
performance than the popular handcrafted features used for breast cancer
histology images. The best feature extractor achieves an average accuracy of
79.30%. To improve the classification performance, a random forest
dissimilarity based integration method is used to combine different feature
groups together. When the five deep learning feature groups are combined, the
average accuracy is improved to 82.90% (best accuracy 85.00%). When handcrafted
features are combined with the five deep learning feature groups, the average
accuracy is improved to 87.10% (best accuracy 93.00%)
- …
