64,872 research outputs found

    Face recognition technologies for evidential evaluation of video traces

    Get PDF
    Human recognition from video traces is an important task in forensic investigations and evidence evaluations. Compared with other biometric traits, face is one of the most popularly used modalities for human recognition due to the fact that its collection is non-intrusive and requires less cooperation from the subjects. Moreover, face images taken at a long distance can still provide reasonable resolution, while most biometric modalities, such as iris and fingerprint, do not have this merit. In this chapter, we discuss automatic face recognition technologies for evidential evaluations of video traces. We first introduce the general concepts in both forensic and automatic face recognition , then analyse the difficulties in face recognition from videos . We summarise and categorise the approaches for handling different uncontrollable factors in difficult recognition conditions. Finally we discuss some challenges and trends in face recognition research in both forensics and biometrics . Given its merits tested in many deployed systems and great potential in other emerging applications, considerable research and development efforts are expected to be devoted in face recognition in the near future

    Side-View Face Recognition

    Get PDF
    Side-view face recognition is a challenging problem with many applications. Especially in real-life scenarios where the environment is uncontrolled, coping with pose variations up to side-view positions is an important task for face recognition. In this paper we discuss the use of side view face recognition techniques to be used in house safety applications. Our aim is to recognize people as they pass through a door, and estimate their location in the house. Here, we compare available databases appropriate for this task, and review current methods for profile face recognition

    Autonomous learning for face recognition in the wild via ambient wireless cues

    Get PDF
    Facial recognition is a key enabling component for emerging Internet of Things (IoT) services such as smart homes or responsive offices. Through the use of deep neural networks, facial recognition has achieved excellent performance. However, this is only possibly when trained with hundreds of images of each user in different viewing and lighting conditions. Clearly, this level of effort in enrolment and labelling is impossible for wide-spread deployment and adoption. Inspired by the fact that most people carry smart wireless devices with them, e.g. smartphones, we propose to use this wireless identifier as a supervisory label. This allows us to curate a dataset of facial images that are unique to a certain domain e.g. a set of people in a particular office. This custom corpus can then be used to finetune existing pre-trained models e.g. FaceNet. However, due to the vagaries of wireless propagation in buildings, the supervisory labels are noisy and weak. We propose a novel technique, AutoTune, which learns and refines the association between a face and wireless identifier over time, by increasing the inter-cluster separation and minimizing the intra-cluster distance. Through extensive experiments with multiple users on two sites, we demonstrate the ability of AutoTune to design an environment-specific, continually evolving facial recognition system with entirely no user effort

    Multicolumn Networks for Face Recognition

    Full text link
    The objective of this work is set-based face recognition, i.e. to decide if two sets of images of a face are of the same person or not. Conventionally, the set-wise feature descriptor is computed as an average of the descriptors from individual face images within the set. In this paper, we design a neural network architecture that learns to aggregate based on both "visual" quality (resolution, illumination), and "content" quality (relative importance for discriminative classification). To this end, we propose a Multicolumn Network (MN) that takes a set of images (the number in the set can vary) as input, and learns to compute a fix-sized feature descriptor for the entire set. To encourage high-quality representations, each individual input image is first weighted by its "visual" quality, determined by a self-quality assessment module, and followed by a dynamic recalibration based on "content" qualities relative to the other images within the set. Both of these qualities are learnt implicitly during training for set-wise classification. Comparing with the previous state-of-the-art architectures trained with the same dataset (VGGFace2), our Multicolumn Networks show an improvement of between 2-6% on the IARPA IJB face recognition benchmarks, and exceed the state of the art for all methods on these benchmarks.Comment: To appear in BMVC201

    Optimizing Face Recognition Using PCA

    Full text link
    Principle Component Analysis PCA is a classical feature extraction and data representation technique widely used in pattern recognition. It is one of the most successful techniques in face recognition. But it has drawback of high computational especially for big size database. This paper conducts a study to optimize the time complexity of PCA (eigenfaces) that does not affects the recognition performance. The authors minimize the participated eigenvectors which consequently decreases the computational time. A comparison is done to compare the differences between the recognition time in the original algorithm and in the enhanced algorithm. The performance of the original and the enhanced proposed algorithm is tested on face94 face database. Experimental results show that the recognition time is reduced by 35% by applying our proposed enhanced algorithm. DET Curves are used to illustrate the experimental results.Comment: 9 page

    Forensic Face Recognition: A Survey

    Get PDF
    Beside a few papers which focus on the forensic aspects of automatic face recognition, there is not much published about it in contrast to the literature on developing new techniques and methodologies for biometric face recognition. In this report, we review forensic facial identification which is the forensic expertsā€Ÿ way of manual facial comparison. Then we review famous works in the domain of forensic face recognition. Some of these papers describe general trends in forensics [1], guidelines for manual forensic facial comparison and training of face examiners who will be required to verify the outcome of automatic forensic face recognition system [2]. Some proposes theoretical framework for application of face recognition technology in forensics [3] and automatic forensic facial comparison [4, 5]. Bayesian framework is discussed in detail and it is elaborated how it can be adapted to forensic face recognition. Several issues related with court admissibility and reliability of system are also discussed. \ud Until now, there is no operational system available which automatically compare image of a suspect with mugshot database and provide result usable in court. The fact that biometric face recognition can in most cases be used for forensic purpose is true but the issues related to integration of technology with legal system of court still remain to be solved. There is a great need for research which is multi-disciplinary in nature and which will integrate the face recognition technology with existing legal systems. In this report we present a review of the existing literature in this domain and discuss various aspects and requirements for forensic face recognition systems particularly focusing on Bayesian framework

    Toward Open-Set Face Recognition

    Full text link
    Much research has been conducted on both face identification and face verification, with greater focus on the latter. Research on face identification has mostly focused on using closed-set protocols, which assume that all probe images used in evaluation contain identities of subjects that are enrolled in the gallery. Real systems, however, where only a fraction of probe sample identities are enrolled in the gallery, cannot make this closed-set assumption. Instead, they must assume an open set of probe samples and be able to reject/ignore those that correspond to unknown identities. In this paper, we address the widespread misconception that thresholding verification-like scores is a good way to solve the open-set face identification problem, by formulating an open-set face identification protocol and evaluating different strategies for assessing similarity. Our open-set identification protocol is based on the canonical labeled faces in the wild (LFW) dataset. Additionally to the known identities, we introduce the concepts of known unknowns (known, but uninteresting persons) and unknown unknowns (people never seen before) to the biometric community. We compare three algorithms for assessing similarity in a deep feature space under an open-set protocol: thresholded verification-like scores, linear discriminant analysis (LDA) scores, and an extreme value machine (EVM) probabilities. Our findings suggest that thresholding EVM probabilities, which are open-set by design, outperforms thresholding verification-like scores.Comment: Accepted for Publication in CVPR 2017 Biometrics Worksho
    • ā€¦
    corecore