626 research outputs found
Enhancement of fracture toughness of epoxy nanocomposites by combining nanotubes and nanosheets as fillers
In this work the fracture toughness of epoxy resin has been improved through the addition of low loading of single part and hybrid nanofiller materials. Functionalised multi-walled carbon nanotubes (f-MWCNTs) was used as single filler, increased the critical strain energy release rate, GIC, by 57% compared to the neat epoxy, at only 0.1 wt% filler content. Importantly, no degradation in the tensile or thermal properties of the nanocomposite was observed compared to the neat epoxy. When two-dimensional boron nitride nanosheets (BNNS) were added along with the one-dimensional f-MWCNTs, the fracture toughness increased further to 71.6% higher than that of the neat epoxy. Interestingly, when functionalised graphene nanoplatelets (f-GNPs) and boron nitride nanotubes (BNNTs) were used as hybrid filler, the fracture toughness of neat epoxy is improved by 91.9%. In neither of these hybrid filler systems the tensile properties were degraded, but the thermal properties of the nanocomposites containing boron nitride materials deteriorated slightly
Interlaboratory Evaluation of Rodent Pulmonary Responses to Engineered Nanomaterials: The NIEHS Nano GO Consortium
Background: Engineered nanomaterials (ENMs) have potential benefits, but they also present safety concerns for human health. Interlaboratory studies in rodents using standardized protocols are needed to assess ENM toxicity.
Methods: Four laboratories evaluated lung responses in C57BL/6 mice to ENMs delivered by oropharyngeal aspiration (OPA), and three labs evaluated Sprague-Dawley (SD) or Fisher 344 (F344) rats following intratracheal instillation (IT). ENMs tested included three forms of titanium dioxide (TiO2) [anatase/rutile spheres (TiO2-P25), anatase spheres (TiO2-A), and anatase nanobelts (TiO2-NBs)] and three forms of multiwalled carbon nanotubes (MWCNTs) [original (O), purified (P), and carboxylic acid “functionalized� (F)]. One day after treatment, bronchoalveolar lavage fluid was collected to determine differential cell counts, lactate dehydrogenase (LDH), and protein. Lungs were fixed for histopathology. Responses were also examined at 7 days (TiO2 forms) and 21 days (MWCNTs) after treatment.
Results: TiO2-A, TiO2-P25, and TiO2-NB caused significant neutrophilia in mice at 1 day in three of four labs. TiO2-NB caused neutrophilia in rats at 1 day in two of three labs, and TiO2-P25 and TiO2-A had no significant effect in any of the labs. Inflammation induced by TiO2 in mice and rats resolved by day 7. All MWCNT types caused neutrophilia at 1 day in three of four mouse labs and in all rat labs. Three of four labs observed similar histopathology to O-MWCNTs and TiO2-NBs in mice.
Conclusions: ENMs produced similar patterns of neutrophilia and pathology in rats and mice. Although interlaboratory variability was found in the degree of neutrophilia caused by the three types of TiO2 nanoparticles, similar findings of relative potency for the three types of MWCNTs were found across all laboratories, thus providing greater confidence in these interlaboratory comparisons
Disentangling Vacancy Oxidation on Metallicity-Sorted Carbon Nanotubes
Pristine single-walled carbon nanotubes (SWCNTs) are rather inert to O
and N, which for low doses chemisorb only on defect sites or vacancies of
the SWCNTs at the ppm level. However, very low doping has a major effect on the
electronic properties and conductivity of the SWCNTs. Already at low O
doses (80 L), the X-ray photoelectron spectroscopy (XPS) O 1s signal becomes
saturated, indicating nearly all the SWCNT's vacancies have been oxidized. As a
result, probing vacancy oxidation on SWCNTs via XPS yields spectra with rather
low signal-to-noise ratios, even for metallicity-sorted SWCNTs. We show that,
even under these conditions, the first principles density functional theory
calculated Kohn-Sham O 1s binding energies may be used to assign the XPS O 1s
spectra for oxidized vacancies on SWCNTs into its individual components. This
allows one to determine the specific functional groups or bonding environments
measured. We find the XPS O 1s signal is mostly due to three O-containing
functional groups on SWCNT vacancies: epoxy (CO), carbonyl
(CCO), and ketene (CCO), as ordered by abundance. Upon
oxidation of nearly all the SWCNT's vacancies, the central peak's intensity for
the metallic SWCNT sample is 60\% greater than for the semiconducting SWCNT
sample. This suggests a greater abundance of O-containing defect structures on
the metallic SWCNT sample. For both metallic and semiconducting SWCNTs, we find
O does not contribute to the measured XPS O~1s spectra
Evaluation of the efficacy of carbon nanotubes for delivering peptides into mitochondria
Mitochondrial (mt) diseases are devastating neurodegenerative pathologies due tomutations in nuclear or mt genes. Among mtDNA pathogenic mutations, more than one half have been identified in transfer RNA (tRNA) genes. These are responsible for a wide range of pathologies including myopathies, encephalopathies, cardiomyopathies and deafness for which no effective treatment is available at present. Therefore, new strategies to suppress their damaging effects are required to envisage therapeutic approaches for these diseases. Here we report data for carbon nanotube (CNT) derivatives showing that the conjugates bearing a specific peptide sequence are able to target the mitochondria in yeast and human monocyte cells while the control derivative without the peptide diffuses into the cytoplasm. Moreover the compounds do not affect cellular viability and cytotoxicity both in vitro and in vivo. Toxicity of the constructs is also assessed on the simple pluricellular model Caenorhabditis elegans
Improved mechanical and electrical properties in electrospun polyimide/multiwalled carbon nanotubes nanofibrous composites
Highly aligned polyimide (PI) and PI/multi-walled carbon nanotubes (PI/MWCNTs) nanofibrous composites by incorporating poly(ethylene oxide) as the dispersing medium were fabricated using electrospinning technique. The morphology, mechanical, and electrical properties of the electrospun nanofibrous composites were investigated. Scanning electron microscope showed that the functionalized MWCNTs (f-MWCNTs) were well dispersed and oriented along the nanofiber axis. Analysis of electrical properties indicated a remarkable improvement on the alternating current conductivity by introduction of the aligned f-MWCNTs. Besides, with addition of 3 vol.% f-MWCNTs, the obvious enhancement of tensile modulus and strength was achieved. Thus, the electrospun PI/MWCNTs nanofibrous composites have great potential applications in multifunctional engineering materials
- …
