13,261 research outputs found
Alterations of intestinal lipoprotein metabolism in diabetes mellitus and metabolic syndrome
Diabetes and metabolic syndrome are associated with abnormal postprandial lipoprotein metabolism, with a significant delay in the clearance of many lipid parameters, including triglycerides and chylomicrons. Abnormal concentrations of plasma lipids can result from changes in the production, conversion, or catabolism of lipoprotein particles. Whereas the liver is involved in controlling serum lipid levels through synthesis of liver derived triglyceride-rich lipoproteins and low-density lipoprotein metabolism, the intestine also has a major role in lipoprotein production. Postprandial lipemia results from increases in apoB-48 availability, lipogenesis, and the synthesis and absorption of cholesterol in the enterocytes. Increased intestinal lipoprotein production prolongs postprandial lipemia in patients with diabetes and MetS, and may contribute directly to atherogenesis in these patients
Differential Effects of Lipid-lowering Drugs in Modulating Morphology of Cholesterol Particles.
Treatment of dyslipidemia patients with lipid-lowering drugs leads to a significant reduction in low-density lipoproteins (LDL) level and a low to moderate level of increase in high-density lipoprotein (HDL) cholesterol in plasma. However, a possible role of these drugs in altering morphology and distribution of cholesterol particles is poorly understood. Here, we describe the in vitro evaluation of lipid-lowering drug effects in modulating morphological features of cholesterol particles using the plaque array method in combination with imaging flow cytometry. Image analyses of the cholesterol particles indicated that lovastatin, simvastatin, ezetimibe, and atorvastatin induce the formation of both globular and linear strand-shaped particles, whereas niacin, fibrates, fluvastatin, and rosuvastatin induce the formation of only globular-shaped particles. Next, purified very low-density lipoprotein (VLDL) and LDL particles incubated with these drugs showed changes in the morphology and image texture of cholesterol particles subpopulations. Furthermore, screening of 50 serum samples revealed the presence of a higher level of linear shaped HDL cholesterol particles in subjects with dyslipidemia (mean of 18.3%) compared to the age-matched normal (mean of 11.1%) samples. We also observed considerable variations in lipid-lowering drug effects on reducing linear shaped LDL and HDL cholesterol particles formation in serum samples. These findings indicate that lipid-lowering drugs, in addition to their cell-mediated hypolipidemic effects, may directly modulate morphology of cholesterol particles by a non-enzymatic mechanism of action. The outcomes of these results have potential to inform diagnosis of atherosclerosis and predict optimal lipid-lowering therapy
Effect of Vascepa (icosapent ethyl) on progression of coronary atherosclerosis in patients with elevated triglycerides (200-499 mg/dL) on statin therapy: Rationale and design of the EVAPORATE study.
Despite reducing progression and promoting regression of coronary atherosclerosis, statin therapy does not fully address residual cardiovascular (CV) risk. High-purity eicosapentaenoic acid (EPA) added to a statin has been shown to reduce CV events and induce regression of coronary atherosclerosis in imaging studies; however, data are from Japanese populations without high triglyceride (TG) levels and baseline EPA serum levels greater than those in North American populations. Icosapent ethyl is a high-purity prescription EPA ethyl ester approved at 4 g/d as an adjunct to diet to reduce TG levels in adults with TG levels >499 mg/dL. The objective of the randomized, double-blind, placebo-controlled EVAPORATE study is to evaluate the effects of icosapent ethyl 4 g/d on atherosclerotic plaque in a North American population of statin-treated patients with coronary atherosclerosis, TG levels of 200 to 499 mg/dL, and low-density lipoprotein cholesterol levels of 40 to 115 mg/dL. The primary endpoint is change in low-attenuation plaque volume measured by multidetector computed tomography angiography. Secondary endpoints include incident plaque rates; quantitative changes in different plaque types and morphology; changes in markers of inflammation, lipids, and lipoproteins; and the relationship between these changes and plaque burden and/or plaque vulnerability. Approximately 80 patients will be followed for 9 to 18 months. The clinical implications of icosapent ethyl 4 g/d treatment added to statin therapy on CV endpoints are being evaluated in the large CV outcomes study REDUCE-IT. EVAPORATE will provide important imaging-derived data that may add relevance to the clinically derived outcomes from REDUCE-IT
Biocatalysis as Useful Tool in Asymmetric Synthesis: An Assessment of Recently Granted Patents (2014–2019)
The broad interdisciplinary nature of biocatalysis fosters innovation, as different technical fields are interconnected and synergized. A way to depict that innovation is by conducting a survey on patent activities. This paper analyses the intellectual property activities of the last five years (2014–2019) with a specific focus on biocatalysis applied to asymmetric synthesis. Furthermore, to reflect the inventive and innovative steps, only patents that were granted during that period are considered. Patent searches using several keywords (e.g., enzyme names) have been conducted by using several patent engine servers (e.g., Espacenet, SciFinder, Google Patents), with focus on granted patents during the period 2014–2019. Around 200 granted patents have been identified, covering all enzyme types. The inventive pattern focuses on the protection of novel protein sequences, as well as on new substrates. In some other cases, combined processes, multi-step enzymatic reactions, as well as process conditions are the innovative basis. Both industries and academic groups are active in patenting. As a conclusion of this survey, we can assert that biocatalysis is increasingly recognized as a useful tool for asymmetric synthesis and being considered as an innovative option to build IP and protect synthetic routes
Physicians' Experiences as Patients with Statin Side Effects: A Case Series.
Physicians are among those prescribed statins and therefore, subject to potential statin adverse effects (AEs). There is little information on the impact of statin AEs on physicians affected by them. We sought to assess the character and impact of statin AEs occurring in physicians and retired physicians, and to ascertain whether/how personal experience of AEs moderated physicians' attitude toward statin use. Seven active or retired physicians from the United States communicated with the Statin Effects Study group regarding their personal experience of statin AEs. AE characteristics, experience with (their own) physicians, and impact of AE was ascertained. We inquired whether or how their experience altered their own attitude toward statins or statin AEs. Patient A: Atorvastatin 40 then 80 mg was followed by cognitive problems, neuropathy, and glucose intolerance in a Radiologist in his 50s (Naranjo criteria: probable causality). Patient B: Atorvastatin 10 mg was followed in 2 months by muscle weakness and myalgia in an Internist in his 40s (probable causality). Patient C: Atorvastatin, ezetimibe/simvastatin, rosuvastatin at varying doses was followed shortly after by irritability, myalgia, and fatigue in a Cardiac Surgeon in his 40s (probable causality). Patient D: Simvastatin 20 then 40 mg was followed in 4 years by mitochondriopathy, myopathy, neuropathy, and exercise intolerance in an Emergency Medicine physician in his 50s (definite causality). Patient E: Simvastatin 20 mg and niacin 1000 mg was followed in one month by muscle weakness and myalgia in a Physical Medicine and Rehabilitation physician in his 50s (probable causality). Patient F: Lovastatin 20 mg then simvastatin 20 mg, atorvastatin 20 mg, rosuvastatin 5 mg, niacin 20 mg and ezetimbe 10 mg was followed by muscle weakness and myalgia in an Obstetrician/Gynecologist in his 70s (definite causality). Patient G: Ezetimibe/simvastatin and atorvastatin (dose unavailable) was followed shortly after by cognitive problems in a Radiologist in her 80s (probable causality). Thus AEs affected multiple quality-of-life relevant domains, often in combination, encompassing muscle (N = 5), fatigue (N = 2), peripheral neuropathy (N = 2), cognitive (N = 2), dysglycemia (N = 1) and behavioral manifestations (N = 1). In five, the AEs affected the physician professionally. Five physicians experienced dismissive attitudes in some of their own healthcare encounters. One noted that his experience helped not only his own attention to statin AEs, but that of other physicians in his community. Several stated that their experience altered their understanding of and/or attitude toward statin AEs, and/or their view of settings in which statin use is warranted. Statin AEs can have profound impact in high functioning professionals with implications to the individual, their professional life, and those whom they serve professionally
Ezetimibe therapy: mechanism of action and clinical update.
The lowering of low-density lipoprotein cholesterol (LDL-C) is the primary target of therapy in the primary and secondary prevention of cardiovascular events. Although statin therapy is the mainstay for LDL-C lowering, a significant percentage of patients prescribed these agents either do not achieve targets with statin therapy alone or have partial or complete intolerance to them. For such patients, the use of adjuvant therapy capable of providing incremental LDL-C reduction is advised. One such agent is ezetimibe, a cholesterol absorption inhibitor that targets uptake at the jejunal enterocyte brush border. Its primary target of action is the cholesterol transport protein Nieman Pick C1 like 1 protein. Ezetimibe is an effective LDL-C lowering agent and is safe and well tolerated. In response to significant controversy surrounding the use and therapeutic effectiveness of this drug, we provide an update on the biochemical mechanism of action for ezetimibe, its safety and efficacy, as well as the results of recent randomized studies that support its use in a variety of clinical scenarios
New approaches in detection and treatment of familial hypercholesterolemia
Familial hypercholesterolemia (FH) is an autosomal dominant genetic disorder that clinically leads to increased low density lipoprotein-cholesterol (LDL-C) levels. As a consequence, FH patients are at high risk for cardiovascular disease (CVD). Mutations are found in genes coding for the LDLR, apoB, and PCSK9, although FH cannot be ruled out in the absence of a mutation in one of these genes. It is pivotal to diagnose FH at an early age, since lipid lowering results in a decreased risk of cardiovascular complications especially if initiated early, but unfortunately FH is largely underdiagnosed. While a number of clinical criteria are available, identification of a pathogenic mutation in any of the three aforementioned genes is seen by many as a way to establish a definitive diagnosis of FH. It should be remembered that clinical treatment is based on LDL-C levels and not solely on presence or absence of genetic mutations as LDL-C is what drives risk. Traditionally, mutation detection has been done by means of dideoxy sequencing. However, novel molecular testing methods are gradually being introduced. These next generation sequencing-based methods are likely to be applied on broader scale once their efficacy and effect on cost are being established. Statins are the first-line therapy of choice for FH patients as they have been proven to reduce CVD risk across a range of conditions including hypercholesterolemia (though not specifically tested in FH). However, in a significant proportion of FH patients LDL-C goals are not met, despite the use of maximal statin doses and additional lipid-lowering therapies. This underlines the need for additional therapies, and inhibition of PCSK9 and CETP is among the most promising new therapeutic options. In this review, we aim to provide an overview of the latest information about the definition, diagnosis, screening, and current and novel therapies for F
Effect of alirocumab on lipids and lipoproteins in individuals with metabolic syndrome without diabetes: Pooled data from 10 phase 3 trials.
AimsThis analysis assessed the efficacy and safety of alirocumab, a proprotein convertase subtilisin/kexin type 9 inhibitor, in patients with or without metabolic syndrome (MetS) using pooled data from 10 phase 3 ODYSSEY trials.Materials and methodsData from 4983 randomized patients (1940 with MetS; 1642 with diabetes excluded) were assessed in subgroups by MetS status. Efficacy data were analysed in 4 pools per study design: 2 placebo-controlled pools (1 using alirocumab 150 mg every 2 weeks [Q2W], 1 using 75/150 mg Q2W) with background statin, and 2 ezetimibe-controlled pools (both alirocumab 75/150 mg Q2W), 1 with and 1 without background statin. Alirocumab 75/150 mg indicates possible dose increase from 75 to 150 mg at Week 12 based on Week 8 LDL-C.ResultsLDL-C percentage reduction from baseline at Week 24 with alirocumab was 63.9% (MetS) and 56.8% (non-MetS) in the pool of alirocumab 150 mg Q2W, and 42.2% to 52.2% (MetS) and 45.0% to 52.6% (non-MetS) in 3 pools using 75/150 mg Q2W. Levels of other lipid and lipoprotein parameters were also improved with alirocumab treatment, including apolipoprotein B, non-high-density lipoprotein cholesterol (non-HDL-C), lipoprotein(a) and HDL-C. Overall, the percentage change at Week 24 in LDL-C and other lipids and lipoproteins did not vary by MetS status. Adverse event rates were generally similar between treatment groups, regardless of MetS status; injection-site reactions occurred more frequently in alirocumab vs control groups.ConclusionsAcross study pools, alirocumab-associated reductions in LDL-C, apolipoprotein B, and non-HDL-C were significant vs control, and did not vary by MetS status
LJ-1888, a selective antagonist for the A3 adenosine receptor, ameliorates the development of atherosclerosis and hypercholesterolemia in apolipoprotein E knock-out mice
- …
