202,715 research outputs found
Estimating and understanding exponential random graph models
We introduce a method for the theoretical analysis of exponential random
graph models. The method is based on a large-deviations approximation to the
normalizing constant shown to be consistent using theory developed by
Chatterjee and Varadhan [European J. Combin. 32 (2011) 1000-1017]. The theory
explains a host of difficulties encountered by applied workers: many distinct
models have essentially the same MLE, rendering the problems ``practically''
ill-posed. We give the first rigorous proofs of ``degeneracy'' observed in
these models. Here, almost all graphs have essentially no edges or are
essentially complete. We supplement recent work of Bhamidi, Bresler and Sly
[2008 IEEE 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS)
(2008) 803-812 IEEE] showing that for many models, the extra sufficient
statistics are useless: most realizations look like the results of a simple
Erd\H{o}s-R\'{e}nyi model. We also find classes of models where the limiting
graphs differ from Erd\H{o}s-R\'{e}nyi graphs. A limitation of our approach,
inherited from the limitation of graph limit theory, is that it works only for
dense graphs.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1155 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org
Bayesian Exponential Random Graph Models with Nodal Random Effects
We extend the well-known and widely used Exponential Random Graph Model
(ERGM) by including nodal random effects to compensate for heterogeneity in the
nodes of a network. The Bayesian framework for ERGMs proposed by Caimo and
Friel (2011) yields the basis of our modelling algorithm. A central question in
network models is the question of model selection and following the Bayesian
paradigm we focus on estimating Bayes factors. To do so we develop an
approximate but feasible calculation of the Bayes factor which allows one to
pursue model selection. Two data examples and a small simulation study
illustrate our mixed model approach and the corresponding model selection.Comment: 23 pages, 9 figures, 3 table
- …
