12,664 research outputs found

    Increasing Evolvability Considered as a Large-Scale Trend in Evolution

    Get PDF
    Evolvability is the capacity to evolve. This paper introduces a simple computational model of evolvability and demonstrates that, under certain conditions, evolvability can increase indefinitely, even when there is no direct selection for evolvability. The model shows that increasing evolvability implies an accelerating evolutionary pace. It is suggested that the conditions for indefinitely increasing evolvability are satisfied in biological and cultural evolution. We claim that increasing evolvability is a large-scale trend in evolution. This hypothesis leads to testable predictions about biological and cultural evolution

    Does self-replication imply evolvability?

    Full text link
    The most prominent property of life on Earth is its ability to evolve. It is often taken for granted that self-replication--the characteristic that makes life possible--implies evolvability, but many examples such as the lack of evolvability in computer viruses seem to challenge this view. Is evolvability itself a property that needs to evolve, or is it automatically present within any chemistry that supports sequences that can evolve in principle? Here, we study evolvability in the digital life system Avida, where self-replicating sequences written by hand are used to seed evolutionary experiments. We use 170 self-replicators that we found in a search through 3 billion randomly generated sequences (at three different sequence lengths) to study the evolvability of generic rather than hand-designed self-replicators. We find that most can evolve but some are evolutionarily sterile. From this limited data set we are led to conclude that evolvability is a likely--but not a guaranteed-- property of random replicators in a digital chemistry.Comment: 8 pages, 5 figures. To appear in "Advances in Artificial Life": Proceedings of the 13th European Conference on Artificial Life (ECAL 2015

    The Emergence of Canalization and Evolvability in an Open-Ended, Interactive Evolutionary System

    Full text link
    Natural evolution has produced a tremendous diversity of functional organisms. Many believe an essential component of this process was the evolution of evolvability, whereby evolution speeds up its ability to innovate by generating a more adaptive pool of offspring. One hypothesized mechanism for evolvability is developmental canalization, wherein certain dimensions of variation become more likely to be traversed and others are prevented from being explored (e.g. offspring tend to have similarly sized legs, and mutations affect the length of both legs, not each leg individually). While ubiquitous in nature, canalization almost never evolves in computational simulations of evolution. Not only does that deprive us of in silico models in which to study the evolution of evolvability, but it also raises the question of which conditions give rise to this form of evolvability. Answering this question would shed light on why such evolvability emerged naturally and could accelerate engineering efforts to harness evolution to solve important engineering challenges. In this paper we reveal a unique system in which canalization did emerge in computational evolution. We document that genomes entrench certain dimensions of variation that were frequently explored during their evolutionary history. The genetic representation of these organisms also evolved to be highly modular and hierarchical, and we show that these organizational properties correlate with increased fitness. Interestingly, the type of computational evolutionary experiment that produced this evolvability was very different from traditional digital evolution in that there was no objective, suggesting that open-ended, divergent evolutionary processes may be necessary for the evolution of evolvability.Comment: SI can be found at: http://www.evolvingai.org/files/SI_0.zi

    Degeneracy: a design principle for achieving robustness and evolvability

    Full text link
    Robustness, the insensitivity of some of a biological system's functionalities to a set of distinct conditions, is intimately linked to fitness. Recent studies suggest that it may also play a vital role in enabling the evolution of species. Increasing robustness, so is proposed, can lead to the emergence of evolvability if evolution proceeds over a neutral network that extends far throughout the fitness landscape. Here, we show that the design principles used to achieve robustness dramatically influence whether robustness leads to evolvability. In simulation experiments, we find that purely redundant systems have remarkably low evolvability while degenerate, i.e. partially redundant, systems tend to be orders of magnitude more evolvable. Surprisingly, the magnitude of observed variation in evolvability can neither be explained by differences in the size nor the topology of the neutral networks. This suggests that degeneracy, a ubiquitous characteristic in biological systems, may be an important enabler of natural evolution. More generally, our study provides valuable new clues about the origin of innovations in complex adaptive systems.Comment: Accepted in the Journal of Theoretical Biology (Nov 2009

    Distribution-Independent Evolvability of Linear Threshold Functions

    Full text link
    Valiant's (2007) model of evolvability models the evolutionary process of acquiring useful functionality as a restricted form of learning from random examples. Linear threshold functions and their various subclasses, such as conjunctions and decision lists, play a fundamental role in learning theory and hence their evolvability has been the primary focus of research on Valiant's framework (2007). One of the main open problems regarding the model is whether conjunctions are evolvable distribution-independently (Feldman and Valiant, 2008). We show that the answer is negative. Our proof is based on a new combinatorial parameter of a concept class that lower-bounds the complexity of learning from correlations. We contrast the lower bound with a proof that linear threshold functions having a non-negligible margin on the data points are evolvable distribution-independently via a simple mutation algorithm. Our algorithm relies on a non-linear loss function being used to select the hypotheses instead of 0-1 loss in Valiant's (2007) original definition. The proof of evolvability requires that the loss function satisfies several mild conditions that are, for example, satisfied by the quadratic loss function studied in several other works (Michael, 2007; Feldman, 2009; Valiant, 2010). An important property of our evolution algorithm is monotonicity, that is the algorithm guarantees evolvability without any decreases in performance. Previously, monotone evolvability was only shown for conjunctions with quadratic loss (Feldman, 2009) or when the distribution on the domain is severely restricted (Michael, 2007; Feldman, 2009; Kanade et al., 2010

    Scuba Search : when selection meets innovation

    Get PDF
    We proposed a new search heuristic using the scuba diving metaphor. This approach is based on the concept of evolvability and tends to exploit neutrality in fitness landscape. Despite the fact that natural evolution does not directly select for evolvability, the basic idea behind the scuba search heuristic is to explicitly push the evolvability to increase. The search process switches between two phases: Conquest-of-the-Waters and Invasion-of-the-Land. A comparative study of the new algorithm and standard local search heuristics on the NKq-landscapes has shown advantage and limit of the scuba search. To enlighten qualitative differences between neutral search processes, the space is changed into a connected graph to visualize the pathways that the search is likely to follow

    Measuring the Evolvability Landscape to study Neutrality

    Get PDF
    This theoretical work defines the measure of autocorrelation of evolvability in the context of neutral fitness landscape. This measure has been studied on the classical MAX-SAT problem. This work highlight a new characteristic of neutral fitness landscapes which allows to design new adapted metaheuristic
    corecore