236,534 research outputs found
EDEN: Evolutionary Deep Networks for Efficient Machine Learning
Deep neural networks continue to show improved performance with increasing
depth, an encouraging trend that implies an explosion in the possible
permutations of network architectures and hyperparameters for which there is
little intuitive guidance. To address this increasing complexity, we propose
Evolutionary DEep Networks (EDEN), a computationally efficient
neuro-evolutionary algorithm which interfaces to any deep neural network
platform, such as TensorFlow. We show that EDEN evolves simple yet successful
architectures built from embedding, 1D and 2D convolutional, max pooling and
fully connected layers along with their hyperparameters. Evaluation of EDEN
across seven image and sentiment classification datasets shows that it reliably
finds good networks -- and in three cases achieves state-of-the-art results --
even on a single GPU, in just 6-24 hours. Our study provides a first attempt at
applying neuro-evolution to the creation of 1D convolutional networks for
sentiment analysis including the optimisation of the embedding layer.Comment: 7 pages, 3 figures, 3 tables and see video
https://vimeo.com/23451009
Ensemble Learning for Free with Evolutionary Algorithms ?
Evolutionary Learning proceeds by evolving a population of classifiers, from
which it generally returns (with some notable exceptions) the single
best-of-run classifier as final result. In the meanwhile, Ensemble Learning,
one of the most efficient approaches in supervised Machine Learning for the
last decade, proceeds by building a population of diverse classifiers. Ensemble
Learning with Evolutionary Computation thus receives increasing attention. The
Evolutionary Ensemble Learning (EEL) approach presented in this paper features
two contributions. First, a new fitness function, inspired by co-evolution and
enforcing the classifier diversity, is presented. Further, a new selection
criterion based on the classification margin is proposed. This criterion is
used to extract the classifier ensemble from the final population only
(Off-line) or incrementally along evolution (On-line). Experiments on a set of
benchmark problems show that Off-line outperforms single-hypothesis
evolutionary learning and state-of-art Boosting and generates smaller
classifier ensembles
Feature learning in feature-sample networks using multi-objective optimization
Data and knowledge representation are fundamental concepts in machine
learning. The quality of the representation impacts the performance of the
learning model directly. Feature learning transforms or enhances raw data to
structures that are effectively exploited by those models. In recent years,
several works have been using complex networks for data representation and
analysis. However, no feature learning method has been proposed for such
category of techniques. Here, we present an unsupervised feature learning
mechanism that works on datasets with binary features. First, the dataset is
mapped into a feature--sample network. Then, a multi-objective optimization
process selects a set of new vertices to produce an enhanced version of the
network. The new features depend on a nonlinear function of a combination of
preexisting features. Effectively, the process projects the input data into a
higher-dimensional space. To solve the optimization problem, we design two
metaheuristics based on the lexicographic genetic algorithm and the improved
strength Pareto evolutionary algorithm (SPEA2). We show that the enhanced
network contains more information and can be exploited to improve the
performance of machine learning methods. The advantages and disadvantages of
each optimization strategy are discussed.Comment: 7 pages, 4 figure
Genetic programming in data mining for drug discovery
Genetic programming (GP) is used to extract from rat oral bioavailability
(OB) measurements simple, interpretable and predictive QSAR models
which both generalise to rats and to marketed drugs in humans. Receiver
Operating Characteristics (ROC) curves for the binary classier produced
by machine learning show no statistical dierence between rats (albeit
without known clearance dierences) and man. Thus evolutionary computing
oers the prospect of in silico ADME screening, e.g. for \virtual"
chemicals, for pharmaceutical drug discovery
- …
