236,534 research outputs found

    EDEN: Evolutionary Deep Networks for Efficient Machine Learning

    Full text link
    Deep neural networks continue to show improved performance with increasing depth, an encouraging trend that implies an explosion in the possible permutations of network architectures and hyperparameters for which there is little intuitive guidance. To address this increasing complexity, we propose Evolutionary DEep Networks (EDEN), a computationally efficient neuro-evolutionary algorithm which interfaces to any deep neural network platform, such as TensorFlow. We show that EDEN evolves simple yet successful architectures built from embedding, 1D and 2D convolutional, max pooling and fully connected layers along with their hyperparameters. Evaluation of EDEN across seven image and sentiment classification datasets shows that it reliably finds good networks -- and in three cases achieves state-of-the-art results -- even on a single GPU, in just 6-24 hours. Our study provides a first attempt at applying neuro-evolution to the creation of 1D convolutional networks for sentiment analysis including the optimisation of the embedding layer.Comment: 7 pages, 3 figures, 3 tables and see video https://vimeo.com/23451009

    Ensemble Learning for Free with Evolutionary Algorithms ?

    Get PDF
    Evolutionary Learning proceeds by evolving a population of classifiers, from which it generally returns (with some notable exceptions) the single best-of-run classifier as final result. In the meanwhile, Ensemble Learning, one of the most efficient approaches in supervised Machine Learning for the last decade, proceeds by building a population of diverse classifiers. Ensemble Learning with Evolutionary Computation thus receives increasing attention. The Evolutionary Ensemble Learning (EEL) approach presented in this paper features two contributions. First, a new fitness function, inspired by co-evolution and enforcing the classifier diversity, is presented. Further, a new selection criterion based on the classification margin is proposed. This criterion is used to extract the classifier ensemble from the final population only (Off-line) or incrementally along evolution (On-line). Experiments on a set of benchmark problems show that Off-line outperforms single-hypothesis evolutionary learning and state-of-art Boosting and generates smaller classifier ensembles

    Feature learning in feature-sample networks using multi-objective optimization

    Full text link
    Data and knowledge representation are fundamental concepts in machine learning. The quality of the representation impacts the performance of the learning model directly. Feature learning transforms or enhances raw data to structures that are effectively exploited by those models. In recent years, several works have been using complex networks for data representation and analysis. However, no feature learning method has been proposed for such category of techniques. Here, we present an unsupervised feature learning mechanism that works on datasets with binary features. First, the dataset is mapped into a feature--sample network. Then, a multi-objective optimization process selects a set of new vertices to produce an enhanced version of the network. The new features depend on a nonlinear function of a combination of preexisting features. Effectively, the process projects the input data into a higher-dimensional space. To solve the optimization problem, we design two metaheuristics based on the lexicographic genetic algorithm and the improved strength Pareto evolutionary algorithm (SPEA2). We show that the enhanced network contains more information and can be exploited to improve the performance of machine learning methods. The advantages and disadvantages of each optimization strategy are discussed.Comment: 7 pages, 4 figure

    Genetic programming in data mining for drug discovery

    Get PDF
    Genetic programming (GP) is used to extract from rat oral bioavailability (OB) measurements simple, interpretable and predictive QSAR models which both generalise to rats and to marketed drugs in humans. Receiver Operating Characteristics (ROC) curves for the binary classier produced by machine learning show no statistical dierence between rats (albeit without known clearance dierences) and man. Thus evolutionary computing oers the prospect of in silico ADME screening, e.g. for \virtual" chemicals, for pharmaceutical drug discovery
    corecore