28,400 research outputs found

    Optimization in Eugenol Production from Clove Oil with Saponification – Neutralization Process by using Response Surface Methods

    Get PDF
    The objective of this research was to obtain optimum condition in eugenol production from clove oil with response surface methods. Clove oil was founded from essential oil cluster in Batang district Central Java. The eugenol was produced with saponification and neutralization process. Eugenol was obtained with vacuum distillation. Eugenol concentration was analyzed with gas chromatography. In this research, the variable was studied are temperature and ratio of sodium hydroxide to clove oil and yield of eugenol as response variable. So the results was obtain in minimum condition with yield of eugenol 39.17% at X 1 = -0,0109 and X 2 = 0.3095 with determinant coefficient 0.764

    No induction of antimicrobial resistance in Staphylococcus aureus and Listeria monocytogenes during continuous exposure to eugenol and citral

    Get PDF
    The aim of this study was to evaluate the adaptation response of Staphylococcus aureus, methicillin-resistant S.aureus (MRSA), and Listeria monocytogenes to the essential oil (EO), eugenol, and citral. The minimum inhibitory concentration of eugenol and citral was determined by agar dilution and microdilution. Adaptation to eugenol and citral was done by sequential exposure of the pathogens to increasing concentrations of the essential oils. The M2-A9 standard was used to determine the antibiotic susceptibility. The effect of eugenol and citral on the adherence ability was evaluated by the crystal violet assay. The impact of adaptation to eugenol on virulence was estimated using the Galleria mellonella model. No development of resistance to the components and antibiotics was observed in the adapted cells of S.aureus, MRSA, and L.monocytogenes. Eugenol and citral at subinhibitory concentration reduced the bacterial adherence. Adaptation to subinhibitory concentration of eugenol affected the virulence potential of S.aureus, MRSA, and L.monocytogenes. Eugenol and citral do not pose a risk of resistance development in a continuous mode of use. These EO components showed a high efficacy as antistaphylococcal and antilisterial biofilm agents. Adaptation at subinhibitory concentration of eugenol protected the larvae against listerial and staphylococcal infection.FCT - Fundacao para a Ciencia e Tecnologia [PEst-OE/EQB/LA0023/2013]info:eu-repo/semantics/publishedVersio

    Use of Injectable Eugenol for Euthanasia and Anesthesia of American Lobsters (Homarus Americanus) and Similar Species

    Get PDF
    Crustaceans are economically and ecologically significant, but current treatment and diagnostic protocols for crustacean health are limited. According to standards given by the American Veterinary Medical Association there are no current methods of euthanizing lobsters, nor are there effective methods of quick release anesthesia. The objective of this research demonstrated that eugenol by direct injection is a safe, efficient and reliable method for euthanizing or anesthetizing crustaceans. Anesthetic levels were determined by behavior responses, death was determined by a lack of response to stimuli. The results presented here suggest eugenol can be used as a euthanizing agent for American lobsters (Homarus americanus) and green crabs (carcinus maenas) injected into the sinusoidal circulatory system at a dose of 7”l/g dissolved in a solution of 70% ethanol and sterile sea water injected into the pericardial sac

    Bioconversion of eugenol into food flavouring agent vanillin

    Get PDF
    Microorganisms have the ability to chemically modify a wide variety of organic compounds by a process referred to as biological or microbial transformation, or in general, bioconversion. The microbial cells and their catalytic machinery (enzymes) accept a wide array of complex molecules as substrates, yielding products with unparallel chiral (enantio-), positional (region-) and chemical (chemo-) selectivity through various biochemical reactions. The present study was formulated on the objective of the conversion of abundantly available phytomolecules eugenol into vanillin, a compound of industrial importance, using microorganisms Aspergillus flavus, Aspergillus niger and Pseudomonas aeruginosa. These microbes were found to be capable of converting eugenol to industrially important cost-effective products, vanillin (used as flavouring agent). The results were analyzed using thin layer and gas chromatographic techniques. Our results demonstrated that A. flavus, A. niger and P. aerouginosa were able to transform eugenol to vanillin. Our findings may provide a novel approach for the production of cost-effective vanillin using microorganisms

    Deciphering the Anti-Aflatoxinogenic Properties of Eugenol Using a Large-Scale q-PCR Approach

    Get PDF
    Produced by several species of Aspergillus, Aflatoxin B1 (AFB1) is a carcinogenic mycotoxin contaminating many crops worldwide. The utilization of fungicides is currently one of the most common methods; nevertheless, their use is not environmentally or economically sound. Thus, the use of natural compounds able to block aflatoxinogenesis could represent an alternative strategy to limit food and feed contamination. For instance, eugenol, a 4-allyl-2-methoxyphenol present in many essential oils, has been identified as an anti-aflatoxin molecule. However, its precise mechanism of action has yet to be clarified. The production of AFB1 is associated with the expression of a 70 kB cluster, and not less than 21 enzymatic reactions are necessary for its production. Based on former empirical data, a molecular tool composed of 60 genes targeting 27 genes of aflatoxin B1 cluster and 33 genes encoding the main regulatory factors potentially involved in its production, was developed. We showed that AFB1 inhibition in Aspergillus flavus following eugenol addition at 0.5 mM in a Malt Extract Agar (MEA) medium resulted in a complete inhibition of the expression of all but one gene of the AFB1 biosynthesis cluster. This transcriptomic effect followed a down-regulation of the complex composed by the two internal regulatory factors, AflR and AflS. This phenomenon was also influenced by an over-expression of veA and mtfA, two genes that are directly linked to AFB1 cluster regulation

    Caenorhabditis elegans muscle Cys-loop receptors as novel targets of terpenoids with potential anthelmintic activity

    Get PDF
    The anthelmintic treatment of nematode infections remains the pillar of worm control in both human and veterinary medicine. Since control is threatened by the appearance of drug resistant nematodes, there is a need to develop novel compounds, among which phytochemicals constitute potential anthelmintic agents. Caenorhabditis elegans has been pivotal in anthelmintic drug discovery and in revealing mechanisms of drug action and resistance. By using C. elegans, we here revealed the anthelmintic actions of three plant terpenoids -thymol, carvacrol and eugenol- at the behavioral level. Terpenoids produce a rapid paralysis of worms with a potency rank order carvacrol > thymol > eugenol. In addition to their paralyzing activity, they also inhibit egg hatching, which would, in turn, lead to a broader anthelmintic spectrum of activity. To identify drug targets, we performed an in vivo screening of selected strains carrying mutations in receptors involved in worm locomotion for determining resistance to the paralyzing effect of terpenoids. The assays revealed that two Cys-loop receptors with key roles in worm locomotion -Levamisole sensitive nicotinic receptor (L-AChR) and GABA(A) (UNC-49) receptor- are involved in the paralyzing effects of terpenoids. To decipher the mechanism by which terpenoids affect these receptors, we performed electrophysiological studies using a primary culture of C. elegans L1 muscle cells. Whole cell recordings from L1 cells demonstrated that terpenoids decrease macroscopic responses of L-AChR and UNC-49 receptor to their endogenous agonists, thus acting as inhibitors. Single-channel recordings from L-AChR revealed that terpenoids decrease the frequency of opening events, probably by acting as negative allosteric modulators. The fact that terpenoids act at different receptors may have important advantages regarding efficacy and development of resistance. Thus, our findings give support to the use of terpenoids as either an alternative or a complementary anthelmintic strategy to overcome the ever-increasing resistance of parasites to classical anthelmintic drugs.Fil: Hernando, Guillermina Silvana. Universidad Nacional del Sur. Departamento de BiologĂ­a, BioquĂ­mica y Farmacia; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca. Universidad Nacional del Sur. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca; ArgentinaFil: Turani, Ornella. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca. Universidad Nacional del Sur. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca; Argentina. Universidad Nacional del Sur. Departamento de BiologĂ­a, BioquĂ­mica y Farmacia; ArgentinaFil: Bouzat, Cecilia Beatriz. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca. Universidad Nacional del Sur. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca; Argentina. Universidad Nacional del Sur. Departamento de BiologĂ­a, BioquĂ­mica y Farmacia; Argentin

    Insects Taken at Japanese Beetle Traps Baited with Anethole-Eugenol in Southern Michigan in 1968

    Get PDF
    A survey of the populations of Jap.anese beetles, Popillia japonica Newman, is made each year in southern Michigan to determine the abundance and distribution of this pest insect. Since little information is available about the insects that are attracted by Japanese beetle attractants in Michigan or anywhere in the United States, a study was made of the insects captured in Japanese beetle traps

    Predicting the substrate specificity of a glycosyltransferase implicated in the production of phenolic volatiles in tomato fruit

    Get PDF
    The volatile compounds that constitute the fruit aroma of ripe tomato (Solanum lycopersicum) are often sequestered in glycosylated form. A homology-based screen was used to identify the gene SlUGT5, which is a member of UDP-glycosyltransferase 72 family and shows specificity towards a range of substrates, including flavonoid, flavanols, hydroquinone, xenobiotics and chlorinated pollutants. SlUGT5 was shown to be expressed primarily in ripening fruit and flowers, and mapped to chromosome I in a region containing a QTL that affected the content of guaiacol and eugenol in tomato crosses. Recombinant SlUGT5 protein demonstrated significant activity towards guaiacol and eugenol, as well as benzyl alcohol and methyl salicylate; however, the highest in vitro activity and affinity was shown for hydroquinone and salicyl alcohol. NMR analysis identified isosalicin as the only product of salicyl alcohol glycosylation. Protein modelling and substrate docking analysis were used to assess the basis for the substrate specificity of SlUGT5. The analysis correctly predicted the interactions with SlUGT5 substrates, and also indicated that increased hydrogen bonding, due to the presence of a second hydrophilic group in methyl salicylate, guaiacol and hydroquinone, appeared to more favourably anchor these acceptors within the glycosylation site, leading to increased stability, higher activities and higher substrate affinities

    Biochemical parameters of silver catfish (Rhamdia quelen) after transport with eugenol or essential oil of Lippia alba added to the water

    Get PDF
    The transport of live fish is a routine practice in aquaculture and constitutes a considerable source of stress to the animals. The addition of anesthetic to the water used for fish transport can prevent or mitigate the deleterious effects of transport stress. This study investigated the effects of the addition of eugenol (EUG) (1.5 or 3.0 mu L L-1) and essential oil of Lippia alba (EOL) (10 or 20 mu L L-1) on metabolic parameters (glycogen, lactate and total protein levels) in liver and muscle, acetylcholinesterase activity (AChE) in muscle and brain, and the levels of protein carbonyl (PC), thiobarbituric acid reactive substances (TBARS) and nonprotein thiol groups (NPSH) and activity of glutathione-S-transferase in the liver of silver catfish (Rhamdia quelen; Quoy and Gaimard, 1824) transported for four hours in plastic bags (loading density of 169.2 g L-1). The addition of various concentrations of EUG (1.5 or 3.0 mu L L-1) and EOL (10 or 20 mu L L-1) to the transport water is advisable for the transportation of silver catfish, since both concentrations of these substances increased the levels of NPSH antioxidant and decreased the TBARS levels in the liver. In addition, the lower liver levels of glycogen and lactate in these groups and lower AChE activity in the brain (EOL 10 or 20 mu L L-1) compared to the control group indicate that the energetic metabolism and neurotransmission were lower after administration of anesthetics, contributing to the maintenance of homeostasis and sedation status.Fundacao de Amparo a Pesquisa do Estado do Rio Grande do Sul (FAPERGS/PRONEX) [10/0016-8]; Conselho Nacional de Pesquisa e Desenvolvimento Cientifico (CNPq) [470964/2009-0]; Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES); CNPqinfo:eu-repo/semantics/publishedVersio
    • 

    corecore