1,102,268 research outputs found

    Business Sphere, Vol. 19, no.1

    Get PDF
    Ethanol, the clean-burning, high octane fuel distilled from Iowa’s corn fields, has the potential to free the U.S. from its foreign oil dependence. Transforming corn into ethanol, however, takes energy, usually in the form of natural gas or coal. Ames-based Frontline BioEnergy is developing biomass-to-energy conversion methods that reduce an ethanol plant’s consumption of fossil fuels, making ethanol an even greener product. As Iowa’s ethanol industry continues to grow, developing energy from biomass could result in huge savings for the state’s production facilities

    A fast ethanol assay to detect seed deterioration

    Get PDF
    The most common way to test seed quality is to use a simple and reliable but time- and space-consuming germination test. In this paper we present a fast and simple method to analyse cabbage seed deterioration by measuring ethanol production from partially imbibed seeds. The method uses a modified breath analyser and is simple compared to gas chromatographic or enzymatic procedures. A modified method using elevated temperatures (40°C instead of 20°C) shortened the assay time and improved its sensitivity. The analysis showed an inverse correlation between ethanol production and seed quality (e.g. the final percentages or speed of germination and the number of normal seedlings). The increase in ethanol production was observed when cabbage seeds were deteriorated by storage under ambient conditions or hot water treatments, both of which reduced the number of normal seedlings. Premature seeds produced more ethanol upon imbibition than mature seeds. Ethanol production occurred simultaneously with oxygen consumption, indicating that lack of oxygen is not the major trigger for ethanol production

    Ethanol triggers grape gene expression leading to anthocyanin accumulation during berry ripening

    Get PDF
    Recent studies have shown that low doses of ethanol stimulate the maturation of some fruits. The present work showed that spraying Cabernet Sauvignon grapes, with 5% ethanol at veraison enhances the anthocyanin accumulation. Veraison is the time when the berries turn from green to purple. HPLC analysis showed a marked increase in the total concentrations of the derivatives of delphinidin, cyanidin, petunidin, peonidin and malvidin from the fourth day after the ethanol treatment until harvest. This was not linked to a difference in berry weight in comparison to controls. Two distinct expression patterns were found for anthocyanin biosynthesis genes in the treated and untreated berries. For one group, consisting of chalcone synthase, flavanone-3-hydroxylase, dihydroxyflavonol-4-reductase and leucoanthocyanidin dioxygenase, the expression was inhibited or unchanged by the ethanol treatment, whereas for UDP glucose-flavonoid 3-O-glucosyltransferase (UFGT) there was a marked increase in expression from 1 to 20 days after ethanol treatment. These results suggest that the UFGT gene is a key factor in the observed anthocyanin accumulation following ethanol treatment

    Adaptation to high ethanol reveals complex evolutionary pathways

    Get PDF
    Tolerance to high levels of ethanol is an ecologically and industrially relevant phenotype of microbes, but the molecular mechanisms underlying this complex trait remain largely unknown. Here, we use long-term experimental evolution of isogenic yeast populations of different initial ploidy to study adaptation to increasing levels of ethanol. Whole-genome sequencing of more than 30 evolved populations and over 100 adapted clones isolated throughout this two-year evolution experiment revealed how a complex interplay of de novo single nucleotide mutations, copy number variation, ploidy changes, mutator phenotypes, and clonal interference led to a significant increase in ethanol tolerance. Although the specific mutations differ between different evolved lineages, application of a novel computational pipeline, PheNetic, revealed that many mutations target functional modules involved in stress response, cell cycle regulation, DNA repair and respiration. Measuring the fitness effects of selected mutations introduced in non-evolved ethanol-sensitive cells revealed several adaptive mutations that had previously not been implicated in ethanol tolerance, including mutations in PRT1, VPS70 and MEX67. Interestingly, variation in VPS70 was recently identified as a QTL for ethanol tolerance in an industrial bio-ethanol strain. Taken together, our results show how, in contrast to adaptation to some other stresses, adaptation to a continuous complex and severe stress involves interplay of different evolutionary mechanisms. In addition, our study reveals functional modules involved in ethanol resistance and identifies several mutations that could help to improve the ethanol tolerance of industrial yeasts

    Can the U.S. Ethanol Industry Compete in the Alternative Fuels' Market?

    Get PDF
    The U.S. ethanol fuel industry has experienced preferential treatment from federal and state governments ever since the Energy Tax Act of 1978 exempted 10% ethanol/gasoline blend (gasohol) from the federal excise tax. Combined with a 54¢/gal ethanol import tariff, this exemption was designed to provide incentives for the establishment and development of a U.S. ethanol industry. Despite these tax exemptions, until recently, the U.S. ethanol fuel industry was unable to expand from a limited regional market. Ethanol was dominated in the market by MTBE (methyl-tertiary-butyl ether). Only after MTBE was found to contaminate groundwater and consequently banned in many states did the demand for ethanol expand nationally. Limit pricing on the part of MTBE refiners is one hypothesis that may explain this lack of ethanol entry into the fuel-additives market. As a test of this hypothesis, a structural vector autoregression (SVAR) model of the ethanol fuel market is developed. The results support the hypothesis of limit-pricing behavior on the part of MTBE refiners, and suggest the U.S. corn-based ethanol industry is vulnerable to limit-price competition, which could recur. The dependence of corn-based ethanol price on supply determinants limits U.S. ethanol refiners' ability to price compete with sugar cane-based ethanol refiners. Without federal support, U.S. ethanol refiners may find it difficult to complete with cheaper sugar cane-refined ethanol, chiefly from Brazil.Resource /Energy Economics and Policy,

    Activity of Zymomonas mobilis on ethanol products made of cashew nut apple (Anacardium occidentale) with different sources of nitrogen

    Get PDF
    Mustofa A, Suranto. 2009. Activity of Zymomonas mobilis on ethanol production made of cashew nut apple (Anacardium occidentale) with different sources of nitrogen. Nusantara Bioscience 1: 105-109. This research is aimed at identifying Zymomonas mobilis in producing ethanol through batch fermentation process (in 24, 48 and 72 hours) using cashewnut apple extract (red, green and yellow variety) and urea, ammonium sulphate, extract of green peanut sprout and extract koro (Mucuna pruriens) as sources of nitrogen. The research showed that green cashewnut extract with ammonium sulphate in 24 hours of fermentation produced ethanol in optimum result. This treatment had pH of 5.87, 7.64 g/100 mL of sugar (with 48.44% of consumption), 8.0x10 7 amount of bacterium (µ = 0.154) and production of ethanol equal to 33.02 g/L (Ye = 90.19%). Key words: Zymomonas mobilis, cashewnut apple extract, ethanol

    Possibilities of upgrading solid underutilized lingo-cellulosic feedstock (carob pods) to liquid bio-fuel: Bio-ethanol production and electricity generation in fuel cells - A critical appraisal of the required processes

    Get PDF
    The exploitation of rich in sugars lingo-cellulosic residue of carob pods for bio-ethanol and bio-electricity generation has been investigated. The process could take place in two (2) or three (3) stages including: a) bio-ethanol production originated from carob pods, b) direct exploitation of bio-ethanol to fuel cells for electricity generation, and/or c) steam reforming of ethanol for hydrogen production and exploitation of the produced hydrogen in fuel cells for electricity generation. Surveying the scientific literature it has been found that the production of bio-ethanol from carob pods and electricity fed to the ethanol fuel cells for hydrogen production do not present any technological difficulties. The economic viability of bio-ethanol production from carob pods has not yet been proved and thus commercial plants do not yet exist. The use, however, of direct fed ethanol fuel cells and steam reforming of ethanol for hydrogen production are promising processes which require, however, further research and development (R&D) before reaching demonstration and possibly a commercial scale. Therefore the realization of power generation from carob pods requires initially the investigation and indication of the appropriate solution of various technological problems. This should be done in a way that the whole integrated process would be cost effective. In addition since the carob tree grows in marginal and partly desertified areas mainly around the Mediterranean region, the use of carob’s fruit for power generation via upgrading of its waste by biochemical and electrochemical processes will partly replace fossil fuels generated electricity and will promote sustainability
    corecore