139,618 research outputs found
Atomic layer etching of SiO2 with Ar and CHF 3 plasmas: A self-limiting process for aspect ratio independent etching
With ever increasing demands on device patterning to achieve smaller critical dimensions, the need for precise, controllable atomic layer etching (ALE) is steadily increasing. In this work, a cyclical fluorocarbon/argon plasma is successfully used for patterning silicon oxide by ALE in a conventional inductively coupled plasma tool. The impact of plasma parameters and substrate electrode temperature on the etch performance is established. We achieve the self-limiting behavior of the etch process by modulating the substrate temperature. We find that at an electrode temperature of −10°C, etching stops after complete removal of the modified surface layer as the residual fluorine from the reactor chamber is minimized. Lastly, we demonstrate the ability to achieve independent etching, which establishes the potential of the developed cyclic ALE process for small scale device patterning
Preparation of atomically clean and flat Si(100) surfaces by low-energy ion sputtering and low-temperature annealing
Si(100) surfaces were prepared by wet-chemical etching followed by 0.3-1.5keV
Ar ion sputtering, either at elevated or room temperature. After a brief anneal
under ultrahigh vacuum conditions, the resulting surfaces were examined by
scanning tunneling microscopy. We find that wet-chemical etching alone cannot
produce a clean and flat Si(100) surface. However, subsequent 300eV Ar ion
sputtering at room temperature followed by a 973K anneal yields atomically
clean and flat Si(100) surfaces suitable for nanoscale device fabrication.Comment: 13 pages, 3 figures, to be published in Applied Surface Scienc
Basic elements for photodeposited high Tc thin film devices
Flat films, high quality insulating layers and adequately superconducting via contacts are basic elements for high Tc device fabrication. We studied the influence of the process parameters of laser deposition on the occurrence of droplets and outgrowths in YBaCuO films. The droplet density is minimal when a laser fluence below about 1.0 J cm-2 is used. The outgrowth density decreases with increasing laser pulse rate or decreasing deposition temperature. High quality flat films were obtained with a rate of 10 Hz and at a temperature of 720 °C. Wet chemical etching and etching with an Argon ion source were used for structuring multilayers with SrTiO3 as an insulating layer. Smooth edges were obtained with an argon gun. Bromine and EDTA etching are not adequate techniques for fabricating controllable well-defined edges. Cross-overs, via contacts and coils were prepared
Re-entrant Layer-by-Layer Etching of GaAs(001)
We report the first observation of re-entrant layer-by-layer etching based on
{\it in situ\/} reflection high-energy electron-diffraction measurements. With
AsBr used to etch GaAs(001), sustained specular-beam intensity oscillations
are seen at high substrate temperatures, a decaying intensity with no
oscillations at intermediate temperatures, but oscillations reappearing at
still lower temperatures. Simulations of an atomistic model for the etching
kinetics reproduce the temperature ranges of these three regimes and support an
interpretation of the origin of this phenomenon as the site-selectivity of the
etching process combined with activation barriers to interlayer adatom
migration.Comment: 11 pages, REVTeX 3.0. Physical Review Letters, in press
Guidelines for etching silicon MEMS structures using fluorine high-density plasmas at cryogenic temperatures
This paper presents guidelines for the deep reactive ion etching (DRIE) of silicon MEMS structures, employing SF/sub 6//O/sub 2/-based high-density plasmas at cryogenic temperatures. Procedures of how to tune the equipment for optimal results with respect to etch rate and profile control are described. Profile control is a delicate balance between the respective etching and deposition rates of a SiO/sub x/F/sub y/ passivation layer on the sidewalls and bottom of an etched structure in relation to the silicon removal rate from unpassivated areas. Any parameter that affects the relative rates of these processes has an effect on profile control. The deposition of the SiO/sub x/F/sub y/ layer is mainly determined by the oxygen content in the SF/sub 6/ gas flow and the electrode temperature. Removal of the SiO/sub x/F/sub y/ layer is mainly determined by the kinetic energy (self-bias) of ions in the SF/sub 6//O/sub 2/ plasma. Diagrams for profile control are given as a function of parameter settings, employing the previously published "black silicon method". Parameter settings for high rate silicon bulk etching, and the etching of micro needles and micro moulds are discussed, which demonstrate the usefulness of the diagrams for optimal design of etched features. Furthermore, it is demonstrated that in order to use the oxygen flow as a control parameter for cryogenic DRIE, it is necessary to avoid or at least restrict the presence of fused silica as a dome material, because this material may release oxygen due to corrosion during operation of the plasma source. When inert dome materials like alumina are used, etching recipes can be defined for a broad variety of microstructures in the cryogenic temperature regime. Recipes with relatively low oxygen content (1-10% of the total gas volume) and ions with low kinetic energy can now be applied to observe a low lateral etch rate beneath the mask, and a high selectivity (more than 500) of silicon etching with respect to polymers and oxide mask materials is obtained. Crystallographic preference etching of silicon is observed at low wafer temperature (-120/spl deg/C). This effect is enhanced by increasing the process pressure above 10 mtorr or for low ion energies (below 20 eV)
Nonhazardous acid etches weld samples
Nonhazardous citric acid solution used with 24 volt dc power supply etches weld samples. This etching method is limited to 300 stainless steel and a small range of other high temperature alloys
Plasma Processing of Large Curved Surfaces for SRF Cavity Modification
Plasma based surface modification of niobium is a promising alternative to
wet etching of superconducting radio frequency (SRF) cavities. The development
of the technology based on Cl2/Ar plasma etching has to address several crucial
parameters which influence the etching rate and surface roughness, and
eventually, determine cavity performance. This includes dependence of the
process on the frequency of the RF generator, gas pressure, power level, the
driven (inner) electrode configuration, and the chlorine concentration in the
gas mixture during plasma processing. To demonstrate surface layer removal in
the asymmetric non-planar geometry, we are using a simple cylindrical cavity
with 8 ports symmetrically distributed over the cylinder. The ports are used
for diagnosing the plasma parameters and as holders for the samples to be
etched. The etching rate is highly correlated with the shape of the inner
electrode, radio-frequency (RF) circuit elements, chlorine concentration in the
Cl2/Ar gas mixtures, residence time of reactive species and temperature of the
cavity. Using cylindrical electrodes with variable radius, large-surface
ring-shaped samples and d.c. bias implementation in the external circuit we
have demonstrated substantial average etching rates and outlined the
possibility to optimize plasma properties with respect to maximum surface
processing effect
- …
