847,158 research outputs found
Compressive Parameter Estimation for Sparse Translation-Invariant Signals Using Polar Interpolation
We propose new compressive parameter estimation algorithms that make use of
polar interpolation to improve the estimator precision. Our work extends
previous approaches involving polar interpolation for compressive parameter
estimation in two aspects: (i) we extend the formulation from real non-negative
amplitude parameters to arbitrary complex ones, and (ii) we allow for mismatch
between the manifold described by the parameters and its polar approximation.
To quantify the improvements afforded by the proposed extensions, we evaluate
six algorithms for estimation of parameters in sparse translation-invariant
signals, exemplified with the time delay estimation problem. The evaluation is
based on three performance metrics: estimator precision, sampling rate and
computational complexity. We use compressive sensing with all the algorithms to
lower the necessary sampling rate and show that it is still possible to attain
good estimation precision and keep the computational complexity low. Our
numerical experiments show that the proposed algorithms outperform existing
approaches that either leverage polynomial interpolation or are based on a
conversion to a frequency-estimation problem followed by a super-resolution
algorithm. The algorithms studied here provide various tradeoffs between
computational complexity, estimation precision, and necessary sampling rate.
The work shows that compressive sensing for the class of sparse
translation-invariant signals allows for a decrease in sampling rate and that
the use of polar interpolation increases the estimation precision.Comment: 13 pages, 5 figures, to appear in IEEE Transactions on Signal
Processing; minor edits and correction
Channel, Phase Noise, and Frequency Offset in OFDM Systems: Joint Estimation, Data Detection, and Hybrid Cramer-Rao Lower Bound
Oscillator phase noise (PHN) and carrier frequency offset (CFO) can adversely
impact the performance of orthogonal frequency division multiplexing (OFDM)
systems, since they can result in inter carrier interference and rotation of
the signal constellation. In this paper, we propose an expectation conditional
maximization (ECM) based algorithm for joint estimation of channel, PHN, and
CFO in OFDM systems. We present the signal model for the estimation problem and
derive the hybrid Cramer-Rao lower bound (HCRB) for the joint estimation
problem. Next, we propose an iterative receiver based on an extended Kalman
filter for joint data detection and PHN tracking. Numerical results show that,
compared to existing algorithms, the performance of the proposed ECM-based
estimator is closer to the derived HCRB and outperforms the existing estimation
algorithms at moderate-to-high signal-to-noise ratio (SNR). In addition, the
combined estimation algorithm and iterative receiver are more computationally
efficient than existing algorithms and result in improved average uncoded and
coded bit error rate (BER) performance
Power spectral estimation algorithms
Algorithms to estimate the power spectrum using Maximum Entropy Methods were developed. These algorithms were coded in FORTRAN 77 and were implemented on the VAX 780. The important considerations in this analysis are: (1) resolution, i.e., how close in frequency two spectral components can be spaced and still be identified; (2) dynamic range, i.e., how small a spectral peak can be, relative to the largest, and still be observed in the spectra; and (3) variance, i.e., how accurate the estimate of the spectra is to the actual spectra. The application of the algorithms based on Maximum Entropy Methods to a variety of data shows that these criteria are met quite well. Additional work in this direction would help confirm the findings. All of the software developed was turned over to the technical monitor. A copy of a typical program is included. Some of the actual data and graphs used on this data are also included
- …
