188,246 research outputs found
Recommended from our members
Determinant of HIV-1 mutational escape from cytotoxic T lymphocytes.
CD8+ class I-restricted cytotoxic T lymphocytes (CTLs) usually incompletely suppress HIV-1 in vivo, and while analogous partial suppression induces antiretroviral drug-resistance mutations, epitope escape mutations are inconsistently observed. However, escape mutation depends on the net balance of selective pressure and mutational fitness costs, which are poorly understood and difficult to study in vivo. Here we used a controlled in vitro system to evaluate the ability of HIV-1 to escape from CTL clones, finding that virus replicating under selective pressure rapidly can develop phenotypic resistance associated with genotypic changes. Escape varied between clones recognizing the same Gag epitope or different Gag and RT epitopes, indicating the influence of the T cell receptor on pressure and fitness costs. Gag and RT escape mutations were monoclonal intra-epitope substitutions, indicating limitation by fitness constraints in structural proteins. In contrast, escape from Nef-specific CTL was more rapid and consistent, marked by a polyclonal mixture of epitope point mutations and upstream frameshifts. We conclude that incomplete viral suppression by CTL can result in rapid emergence of immune escape, but the likelihood is strongly determined by factors influencing the fitness costs of the particular epitope targeted and the ability of responding CTL to recognize specific epitope variants
Selection of neutralizing antibody escape mutants with type A influenza virus HA-specific polyclonal antisera: possible significance for antigenic drift
Ten antisera were produced in rabbits by two or three intravenous injections of inactivated whole influenza type A virions. All contained haemagglutination-inhibition (HI) antibody directed predominantly to an epitope in antigenic site B and, in addition, various amounts of antibodies to an epitope in site A and in site D. The ability of untreated antisera to select neutralization escape mutants was investigated by incubating virus possessing the homologous haemagglutinin with antiserum adjusted to contain anti-B epitope HI titres of 100, 1000 and 10000 HIU/ml. Virus-antiserum mixtures were inoculated into embryonated hen's eggs, and progeny virus examined without further selection. Forty percent of the antisera at a titre of 1000 HIU/ml selected neutralizing antibody escape mutants as defined by their lack of reactivity to Mab HC10 (site B), and unchanged reactivity to other Mabs to site A and site D epitopes. All escape mutant-selecting antisera had a ratio of anti-site B (HC10)-epitope antibody[ratio]other antibodies of [gt-or-equal, slanted]2·0[ratio]1. The antiserum with the highest ratio (7·4[ratio]1) selected escape mutants in all eggs tested in four different experiments. No antiserum used at a titre of 10000 HIU/ml allowed multiplication of any virus. All antisera used at a titre of 100 HIU/ml permitted virus growth, but this was wild-type (wt) virus. We conclude that a predominant epitope-specific antibody response, a titre of [gt-or-equal, slanted]1000 HIU/ml, and a low absolute titre of other antibodies ([less-than-or-eq, slant]500 HIU/ml) are three requirements for the selection of escape mutants. None of the antisera in this study could have selected escape mutants without an appropriate dilution factor, so the occurrence of an escape mutant-selecting antiserum in nature is likely to be a rare event
A gp41 MPER-specific llama VHH requires a hydrophobic CDR3 for neutralization but not for antigen recognition
The membrane proximal external region (MPER) of the HIV-1 glycoprotein gp41 is targeted by the broadly neutralizing antibodies 2F5 and 4E10. To date, no immunization regimen in animals or humans has produced HIV-1 neutralizing MPER-specific antibodies. We immunized llamas with gp41-MPER proteoliposomes and selected a MPER-specific single chain antibody (VHH), 2H10, whose epitope overlaps with that of mAb 2F5. Bi-2H10, a bivalent form of 2H10, which displayed an approximately 20-fold increased affinity compared to the monovalent 2H10, neutralized various sensitive and resistant HIV-1 strains, as well as SHIV strains in TZM-bl cells. X-ray and NMR analyses combined with mutagenesis and modeling revealed that 2H10 recognizes its gp41 epitope in a helical conformation. Notably, tryptophan 100 at the tip of the long CDR3 is not required for gp41 interaction but essential for neutralization. Thus bi-2H10 is an anti-MPER antibody generated by immunization that requires hydrophobic CDR3 determinants in addition to epitope recognition for neutralization similar to the mode of neutralization employed by mAbs 2F5 and 4E10
A single mutation in the envelope protein modulates flavivirus antigenicity, stability, and pathogenesis
The structural flexibility or 'breathing' of the envelope (E) protein of flaviviruses allows virions to sample an ensemble of conformations at equilibrium. The molecular basis and functional consequences of virus conformational dynamics are poorly understood. Here, we identified a single mutation at residue 198 (T198F) of the West Nile virus (WNV) E protein domain I-II hinge that regulates virus breathing. The T198F mutation resulted in a ~70-fold increase in sensitivity to neutralization by a monoclonal antibody targeting a cryptic epitope in the fusion loop. Increased exposure of this otherwise poorly accessible fusion loop epitope was accompanied by reduced virus stability in solution at physiological temperatures. Introduction of a mutation at the analogous residue of dengue virus (DENV), but not Zika virus (ZIKV), E protein also increased accessibility of the cryptic fusion loop epitope and decreased virus stability in solution, suggesting that this residue modulates the structural ensembles sampled by distinct flaviviruses at equilibrium in a context dependent manner. Although the T198F mutation did not substantially impair WNV growth kinetics in vitro, studies in mice revealed attenuation of WNV T198F infection. Overall, our study provides insight into the molecular basis and the in vitro and in vivo consequences of flavivirus breathing
- …
