40,651 research outputs found

    Crossovers between epigenesis and epigenetics. A multicenter approach to the history of epigenetics (1901-1975)

    Get PDF
    The origin of epigenetics has been traditionally traced back to Conrad Hal Waddington's foundational work in 1940s. The aim of the present paper is to reveal a hidden history of epigenetics, by means of a multicenter approach. Our analysis shows that genetics and embryology in early XX century--far from being non-communicating vessels--shared similar questions, as epitomized by Thomas Hunt Morgan's works. Such questions were rooted in the theory of epigenesis and set the scene for the development of epigenetics. Since the 1950s, the contribution of key scientists (Mary Lyon and Eduardo Scarano), as well as the discussions at the international conference of Gif-sur-Yvette (1957) paved the way for three fundamental shifts of focus: 1. From the whole embryo to the gene; 2. From the gene to the complex extranuclear processes of development; 3. From cytoplasmic inheritance to the epigenetics mechanisms

    Epigenetic inheritance. Concepts, mechanisms and perspectives

    Get PDF
    Parents' stressful experiences can influence an offspring's vulnerability to many pathological conditions, including psychopathologies, and their effects may even endure for several generations. Nevertheless, the cause of this phenomenon has not been determined, and only recently have scientists turned to epigenetics to answer this question. There is extensive literature on epigenetics, but no consensus exists with regard to how and what can (and must) be considered to study and define epigenetics processes and their inheritance. In this work, we aimed to clarify and systematize these concepts. To this end, we analyzed the dynamics of epigenetic changes over time in detail and defined three types of epigenetics: a direct form of epigenetics (DE) and two indirect epigenetic processes-within (WIE) and across (AIE). DE refers to changes that occur in the lifespan of an individual, due to direct experiences with his environment. WIE concerns changes that occur inside of the womb, due to events during gestation. Finally, AIE defines changes that affect the individual's predecessors (parents, grandparents, etc.), due to events that occur even long before conception and that are somehow (e.g., through gametes, the intrauterine environment setting) transmitted across generations. This distinction allows us to organize the main body of epigenetic evidence according to these categories and then focus on the latter (AIE), referring to it as a faster route of informational transmission across generations-compared with genetic inheritance-that guides human evolution in a Lamarckian (i.e., experience-dependent) manner. Of the molecular processes that are implicated in this phenomenon, well-known (methylation) and novel (non-coding RNA, ncRNA) regulatory mechanisms are converging. Our discussion of the chief methods that are used to study epigenetic inheritance highlights the most compelling technical and theoretical problems of this discipline. Experimental suggestions to expand this field are provided, and their practical and ethical implications are discussed extensivel

    The modern versus extended evolutionary synthesis : sketch of an intra-genomic gene's eye view for the evolutionary-genetic underpinning of epigenetic and developmental evolution

    Get PDF
    Studying the phenotypic evolution of organisms in terms of populations of genes and genotypes, the Modern Synthesis (MS) conceptualizes biological evolution in terms of 'inter-organismal' interactions among genes sitting in the different individual organisms that constitute a population. It 'black-boxes' the complex 'intra-organismic' molecular and developmental epigenetics mediating between genotypes and phenotypes. To conceptually integrate epigenetics and evo-devo into evolutionary theory, advocates of an Extended Evolutionary Synthesis (EES) argue that the MS's reductive gene-centrism should be abandoned in favor of a more inclusive organism-centered approach. To push the debate to a new level of understanding, we introduce the evolutionary biology of 'intra-genomic conflict' (IGC) to the controversy. This strategy is based on a twofold rationale. First, the field of IGC is both ‘gene-centered’ and 'intra-organismic' and, as such, could build a bridge between the gene-centered MS and the intra-organismic fields of epigenetics and evo-devo. And second, it is increasingly revealed that IGC plays a significant causal role in epigenetic and developmental evolution and even in speciation. Hence, to deal with the ‘discrepancy’ between the ‘gene-centered’ MS and the ‘intra-organismic’ fields of epigenetics and evo-devo, we sketch a conceptual solution in terms of ‘intra-genomic conflict and compromise’ – an ‘intra-genomic gene’s eye view’ that thinks in terms of intra-genomic ‘evolutionarily stable strategies’ (ESSs) among numerous and various DNA regions and elements – to evolutionary-genetically underwrite both epigenetic and developmental evolution, as such questioning the ‘gene-de-centered’ stance put forward by EES-advocates

    Regulation of skeletal muscle development and homeostasis by gene imprinting, histone acetylation and microRNA

    Get PDF
    Epigenetics is defined as heritable information other that the DNA sequence itself. The concept implies that the regulation of gene expression is highly complex and epigenetics can control from fine tuning to permanent gene activation/deactivation. Skeletal muscle is the main tissue for locomotion and energy metabolism in the body, and represent at least 40% of the body mass. Body mass and function vary according to age but also quickly adapt to physiological as well as pathological cues. Besides transcriptional mechanisms that control muscle differentiation, postnatal growth and remodeling, there are numerous epigenetic mechanisms of regulation that modulate muscle gene expression. In this review, we describe and discuss only some of the mechanisms of epigenetic regulation - such as DNA methylation, histone modifications, and microRNAs - that have been characterized in detail and that we believe are crucial for skeletal muscle development and disease

    ‘Epigenetics and Society': a forum for the theoretical, ethical and societal appraisal of a burgeoning science

    Get PDF
    Epigenetics Communications is proud to announce the introduction of a new section entitled ‘Epigenetics and Society’ (EaS). EaS offers a forum for researcher from various disciplines to engage with the theoretical, interdisciplinary, ethical, social and political dimensions of epigenetics. Authors, within and beyond academia, are invited to submit manuscripts of original research, reviews or perspectives/correspondences dealing with these different facets of epigenetics. The EaS section is meant to provide an opportunity for sharing work across disciplinary borders in ways that both illuminate the science-society intersections around epigenetics and promote their operationalization in multidisciplinary and collaborative scientific practices

    Negotiating Novelty: Constructing the Novel within Scientific Accounts of Epigenetics

    Get PDF
    Epigenetics is regarded by many as a compelling domain of biomedicine. The purported novelty of epigenetics has begun to have various societal ramifications, particularly in relation to processes of responsibilisation. Within sociology, it has stimulated hopeful debate about conceptual rapprochements between the biomedical and social sciences. This article is concerned with how novelty is socially produced and negotiated. The article engages directly with scientists’ talk and writings about epigenetics (as process and field of study). I aim to advance an explicitly sociological analysis about the novelty of epigenetics that underscores its social production rather than an account which participates in its reification. I attend to definitional skirmishes, comparisons with genetics, excitement and intrigue, and considerations of the ethical dimensions of epigenetics. Any assertions that epigenetics is exciting or important should not inadvertently elide reflexive consideration of how such characterisations might be part of the machinery by which they become real

    Epigenetics and triplet-repeat neurological diseases

    Get PDF
    The term ‘junk DNA’ has been reconsidered following the delineation of the functional significance of repetitive DNA regions. Typically associated with centromeres and telomeres, DNA repeats are found in nearly all organisms throughout their genomes. Repetitive regions are frequently heterchromatinised resulting in silencing of intrinsic and nearby genes. However, this is not a uniform rule, with several genes known to require such an environment to permit transcription. Repetitive regions frequently exist as dinucleotide, trinucleotide and tetranucleotide repeats. The association between repetitive regions and disease was emphasised following the discovery of abnormal trinucleotide repeats underlying spinal and bulbar muscular atrophy (Kennedy’s disease) and fragile X syndrome of mental retardation (FRAXA) in 1991. In this review we provide a brief overview of epigenetic mechanisms and then focus on several diseases caused by DNA triplet-repeat expansions, which exhibit diverse epigenetic effects. It is clear that the emerging field of epigenetics is already generating novel potential therapeutic avenues for this group of largely incurable diseases

    Advances in Epigenetic Cancer Therapeutics

    Get PDF
    Cancer has traditionally been hailed a genetic disease, dictated by successive genetic aberrations which alter gene expression. Yet, recent advances in molecular sequencing technologies, enabling the characterisation of cancer patient phenotypes on a large scale, have highlighted epigenetic changes as a hallmark of cancer. Epigenetic modifications, including DNA methylation and demethylation and histone modifications, have been found to play a key role in the pathogenesis of a wide variety of cancers through the regulation of chromatin state, gene expression and other nuclear events. Targeting epigenetic aberrations offers remarkable promise as a potential anti-cancer therapy given the reversible nature of epigenetic changes. Hence, epigenetic therapy has emerged as a rapidly advancing field of cancer research. A plethora of epigenetic therapies which inhibit enzymes of post-translational histone modifications, so-called ‘writers’, ‘erasers’ and ‘readers’, have been developed, with several epigenetic inhibitor agents approved for use in routine clinical practice. Epigenetic therapeutics inhibit the methylation or demethylation and acetylation or deacetylation of DNA and histone proteins. Their targets include writers (DNA methyltransferases [DNMT], histone acetyltransferases [HAT] and histone deacetylases [HDAC]) and erasers (histone demethylases [HDM] and histone methylases [HMT]). With new epigenetic mechanisms increasingly being elucidated, a vast array of targets and therapeutics have been brought to the fore. This review discusses recent advances in cancer epigenetics with a focus on molecular targets and mechanisms of action of epigenetic cancer therapeutics
    • 

    corecore