1,801,349 research outputs found

    Environmental stress responses in Lactococcus lactis

    Get PDF
    Bacteria can encounter a variety of physical conditions during their life. Bacterial cells are able to survive these (often adverse) conditions by the induction of specific or general protection mechanisms. The lactic acid bacterium Lactococcus lactis is widely used for the production of cheese. Before and during this process as well as in its natural habitats, it is subjected to several stressful conditions. Such conditions include oxidation, heating and cooling, acid, high osmolarity/dehydration and starvation. In many environments combinations of these parameters occur. Understanding the stress response behaviour of L. lactis is important to optimize its application in industrial fermentations and is of fundamental interest as L. lactis is a non-differentiating Gram-positive bacterium. The stress response mechanisms of L. lactis have drawn increasing attention in recent years. The presence in L. lactis of a number of the conserved systems (e.g. the heat shock proteins) has been confirmed. Some of the regulatory mechanisms responding to an environmental stress condition are related to those found in other Gram-positive bacteria. Other stress response systems are conserved at the protein level but are under control of mechanisms unique for L. lactis. In a number of cases exposure to a single type of stress provides resistance to other adverse conditions. The unravelling of the underlying regulatory systems gives insight into the development of such cross resistance. Taken together, L. lactis has a unique set of stress response mechanisms, most of which have been identified on the basis of homology with proteins known from other bacteria. A number of the regulatory elements may provide attractive tools for the development of food grade inducible gene expression systems. Here an overview of the growth limits of L. lactis and the molecular characterization of its stress resistance mechanisms is presented.

    A study on task difficulty and acceleration stress

    Get PDF
    The results of two experiments which relate to task difficulty and the effects of environmental stress on tracking performance are discussed and compared to subjective evaluations. The first experiment involved five different sum of sine tracking tasks which humans tracked both in a static condition and under a 5 Gz acceleration stress condition. The second experiment involved similar environmental stress conditions but in this case the tasks were constructed from deterministic functions with specially designed velocity and acceleration profiles. Phase Plane performance analysis was conducted to study potential measures of workload or tracking difficulty

    Primary and secondary oxidative stress in Bacillus

    Get PDF
    Coping with oxidative stress originating from oxidizing compounds or reactive oxygen species (ROS), associated with the exposure to agents that cause environmental stresses, is one of the prerequisites for an aerobic lifestyle of Bacillus spp. such as B. subtilis, B. cereus and B. anthracis. This minireview highlights novel insights in the primary oxidative stress response caused by oxidizing compounds including hydrogen peroxide and the secondary oxidative stress responses apparent upon exposure to a range of agents and conditions leading to environmental stresses such as antibiotics, heat and acid. Insights in the pathways and damaging radicals involved have been compiled based among others on transcriptome studies, network analyses and fluorescence techniques for detection of ROS at single cell level. Exploitation of the current knowledge for the control of spoilage and pathogenic bacteria is discussed

    Environmental Effects On Drosophila Brain Development And Learning

    Get PDF
    Brain development and behavior are sensitive to a variety of environmental influences including social interactions and physicochemical stressors. Sensory input in situ is a mosaic of both enrichment and stress, yet little is known about how multiple environmental factors interact to affect brain anatomical structures, circuits and cognitive function. In this study, we addressed these issues by testing the individual and combined effects of sub-adult thermal stress, larval density and early-adult living spatial enrichment on brain anatomy and olfactory associative learning in adult Drosophila melanogaster. In response to heat stress, the mushroom bodies (MBs) were the most volumetrically impaired among all of the brain structures, an effect highly correlated with reduced odor learning performance. However, MBs were not sensitive to either larval culture density or early-adult living conditions. Extreme larval crowding reduced the volume of the antennal lobes, optic lobes and central complex. Neither larval crowding nor early-adult spatial enrichment affected olfactory learning. These results illustrate that various brain structures react differently to environmental inputs, and that MB development and learning are highly sensitive to certain stressors (pre-adult hyperthermia) and resistant to others (larval crowding). © 2018. Published by The Company of Biologists Ltd

    Natural variation in abiotic stress responsive gene expression and local adaptation to climate in Arabidopsis thaliana.

    Get PDF
    Gene expression varies widely in natural populations, yet the proximate and ultimate causes of this variation are poorly known. Understanding how variation in gene expression affects abiotic stress tolerance, fitness, and adaptation is central to the field of evolutionary genetics. We tested the hypothesis that genes with natural genetic variation in their expression responses to abiotic stress are likely to be involved in local adaptation to climate in Arabidopsis thaliana. Specifically, we compared genes with consistent expression responses to environmental stress (expression stress responsive, "eSR") to genes with genetically variable responses to abiotic stress (expression genotype-by-environment interaction, "eGEI"). We found that on average genes that exhibited eGEI in response to drought or cold had greater polymorphism in promoter regions and stronger associations with climate than those of eSR genes or genomic controls. We also found that transcription factor binding sites known to respond to environmental stressors, especially abscisic acid responsive elements, showed significantly higher polymorphism in drought eGEI genes in comparison to eSR genes. By contrast, eSR genes tended to exhibit relatively greater pairwise haplotype sharing, lower promoter diversity, and fewer nonsynonymous polymorphisms, suggesting purifying selection or selective sweeps. Our results indicate that cis-regulatory evolution and genetic variation in stress responsive gene expression may be important mechanisms of local adaptation to climatic selective gradients

    Development of reliability prediction technique for semiconductor diodes

    Get PDF
    New fundamental technique of reliability prediction for semiconductor diodes based on realistic mathematical models can be applied to component failure rate prediction including mechanical degradation, electrical degradation, environmental stress factors, and electrical load stress factors

    More than a feeling: A unified view of stress measurement for population science.

    Get PDF
    Stress can influence health throughout the lifespan, yet there is little agreement about what types and aspects of stress matter most for human health and disease. This is in part because "stress" is not a monolithic concept but rather, an emergent process that involves interactions between individual and environmental factors, historical and current events, allostatic states, and psychological and physiological reactivity. Many of these processes alone have been labeled as "stress." Stress science would be further advanced if researchers adopted a common conceptual model that incorporates epidemiological, affective, and psychophysiological perspectives, with more precise language for describing stress measures. We articulate an integrative working model, highlighting how stressor exposures across the life course influence habitual responding and stress reactivity, and how health behaviors interact with stress. We offer a Stress Typology articulating timescales for stress measurement - acute, event-based, daily, and chronic - and more precise language for dimensions of stress measurement

    Environmental stress alters genetic regulation of novelty seeking in vervet monkeys.

    Get PDF
    Considerable attention has been paid to identifying genetic influences and gene-environment interactions that increase vulnerability to environmental stressors, with promising but inconsistent results. A nonhuman primate model is presented here that allows assessment of genetic influences in response to a stressful life event for a behavioural trait with relevance for psychopathology. Genetic and environmental influences on free-choice novelty seeking behaviour were assessed in a pedigreed colony of vervet monkeys before and after relocation from a low stress to a higher stress environment. Heritability of novelty seeking scores, and genetic correlations within and between environments were conducted using variance components analysis. The results showed that novelty seeking was markedly inhibited in the higher stress environment, with effects persisting across a 2-year period for adults but not for juveniles. There were significant genetic contributions to novelty seeking scores in each year (h(2) = 0.35-0.43), with high genetic correlations within each environment (rhoG > 0.80) and a lower genetic correlation (rhoG = 0.35, non-significant) between environments. There were also significant genetic contributions to individual change scores from before to after the move (h(2) = 0.48). These results indicate that genetic regulation of novelty seeking was modified by the level of environmental stress, and they support a role for gene-environment interactions in a behavioural trait with relevance for mental health

    Creep fatigue life prediction for engine hot section materials (ISOTROPIC)

    Get PDF
    The specific activities summarized include: verification experiments (base program); thermomechanical cycling model; multiaxial stress state model; cumulative loading model; screening of potential environmental and protective coating models; and environmental attack model
    corecore