778 research outputs found

    Efficient Federated Learning on Knowledge Graphs via Privacy-preserving Relation Embedding Aggregation

    Full text link
    Federated Learning (FL) on knowledge graphs (KGs) has yet to be as well studied as other domains, such as computer vision and natural language processing. A recent study FedE first proposes an FL framework that shares entity embeddings of KGs across all clients. However, compared with model sharing in vanilla FL, entity embedding sharing from FedE would incur severe privacy leakage. Specifically, the known entity embedding can be used to infer whether a specific relation between two entities exists in a private client. In this paper, we first develop a novel attack that aims to recover the original data based on embedding information, which is further used to evaluate the vulnerabilities of FedE. Furthermore, we propose a Federated learning paradigm with privacy-preserving Relation embedding aggregation (FedR) to tackle the privacy issue in FedE. Compared to entity embedding sharing, relation embedding sharing policy can significantly reduce the communication cost due to its smaller size of queries. We conduct extensive experiments to evaluate FedR with five different embedding learning models and three benchmark KG datasets. Compared to FedE, FedR achieves similar utility and significant (nearly 2X) improvements in both privacy and efficiency on link prediction task.Comment: Accepted to ACL 2022 Workshop on Federated Learning for Natural Language Processin

    SE-KGE: A Location-Aware Knowledge Graph Embedding Model for Geographic Question Answering and Spatial Semantic Lifting

    Get PDF
    Learning knowledge graph (KG) embeddings is an emerging technique for a variety of downstream tasks such as summarization, link prediction, information retrieval, and question answering. However, most existing KG embedding models neglect space and, therefore, do not perform well when applied to (geo)spatial data and tasks. For those models that consider space, most of them primarily rely on some notions of distance. These models suffer from higher computational complexity during training while still losing information beyond the relative distance between entities. In this work, we propose a location-aware KG embedding model called SE-KGE. It directly encodes spatial information such as point coordinates or bounding boxes of geographic entities into the KG embedding space. The resulting model is capable of handling different types of spatial reasoning. We also construct a geographic knowledge graph as well as a set of geographic query-answer pairs called DBGeo to evaluate the performance of SE-KGE in comparison to multiple baselines. Evaluation results show that SE-KGE outperforms these baselines on the DBGeo dataset for geographic logic query answering task. This demonstrates the effectiveness of our spatially-explicit model and the importance of considering the scale of different geographic entities. Finally, we introduce a novel downstream task called spatial semantic lifting which links an arbitrary location in the study area to entities in the KG via some relations. Evaluation on DBGeo shows that our model outperforms the baseline by a substantial margin.Comment: Accepted to Transactions in GI
    • …
    corecore