3,402 research outputs found

    Ensemble Technique Utilization for Indonesian Dependency Parser

    Get PDF

    Using Ensemble Technique to Improve Multiclass Classification

    Get PDF
    Many real world applications inevitably contain datasets that have multiclass structure characterized by imbalance classes, redundant and irrelevant features that degrade performance of classifiers. Minority classes in the datasets are treated as outliers’ classes. The research aimed at establishing the role of ensemble technique in improving performance of multiclass classification. Multiclass datasets were transformed to binary and the datasets resampled using Synthetic minority oversampling technique (SMOTE) algorithm.  Relevant features of the datasets were selected by use of an ensemble filter method developed using Correlation, Information Gain, Gain-Ratio and ReliefF filter selection methods. Adaboost and Random subspace learning algorithms were combined using Voting methodology utilizing random forest as the base classifier. The classifiers were evaluated using 10 fold stratified cross validation. The model showed better performance in terms of outlier detection and classification prediction for multiclass problem. The model outperformed other well-known existing classification and outlier detection algorithms such as Naïve bayes, KNN, Bagging, JRipper, Decision trees, RandomTree and Random forest. The study findings established that ensemble technique, resampling datasets and decomposing multiclass results in an improved classification performance as well as enhanced detection of minority outlier (rare) classes. Keywords: Multiclass, Classification, Outliers, Ensemble, Learning Algorithm DOI: 10.7176/JIEA/9-5-04 Publication date: August 31st 201

    Studies for Strings A string Ensemble Technique Manual

    Get PDF

    Generalized Macdonald polynomials, spectral duality for conformal blocks and AGT correspondence in five dimensions

    Full text link
    We study five dimensional AGT correspondence by means of the q-deformed beta-ensemble technique. We provide a special basis of states in the q-deformed CFT Hilbert space consisting of generalized Macdonald polynomials, derive the loop equations for the beta-ensemble and obtain the factorization formulas for the corresponding matrix elements. We prove the spectral duality for Nekrasov functions and discuss its meaning for conformal blocks. We also clarify the relation between topological strings and q-Liouville vertex operators.Comment: 22 pages, 1 figure, v2: typos corrected, a reference adde

    Phishing Detection using Base Classifier and Ensemble Technique

    Get PDF
    Phishing attacks continue to pose a significant threat in today's digital landscape, with both individuals and organizations falling victim to these attacks on a regular basis. One of the primary methods used to carry out phishing attacks is through the use of phishing websites, which are designed to look like legitimate sites in order to trick users into giving away their personal information, including sensitive data such as credit card details and passwords. This research paper proposes a model that utilizes several benchmark classifiers, including LR, Bagging, RF, K-NN, DT, SVM, and Adaboost, to accurately identify and classify phishing websites based on accuracy, precision, recall, f1-score, and confusion matrix. Additionally, a meta-learner and stacking model were combined to identify phishing websites in existing systems. The proposed ensemble learning approach using stack-based meta-learners proved to be highly effective in identifying both legitimate and phishing websites, achieving an accuracy rate of up to 97.19%, with precision, recall, and f1 scores of 97%, 98%, and 98%, respectively. Thus, it is recommended that ensemble learning, particularly with stacking and its meta-learner variations, be implemented to detect and prevent phishing attacks and other digital cyber threats

    Generalized-Ensemble Simulations of the Human Parathyroid Hormone Fragment PTH(1-34)

    Full text link
    A generalized-ensemble technique, multicanonical sampling, is used to study the folding of a 34-residue human parathyroid hormone fragment. An all-atom model of the peptide is employed and the protein-solvent interactions are approximated by an implicit solvent. Our results demonstrate that generalized-ensemble simulations are well suited to sample low-energy structures of such large polypeptides. Configurations with a root-mean-square deviation (rmsd) to the crystal structure of less than one \AA are found. Finally, we discuss limitations of our implicit solvent model.Comment: To appear in J. Chem. Phy
    • …
    corecore