242,572 research outputs found
A Very Strong Enhancer Is Located Upstream of an Immediate Early Gene of Human Cytomegalovirus
A strong transcription enhancer was identified in the genomic DNA (235 kb) of human cytomegalovirus (HCMV), a ubiquitous and severe pathogen of the herpesvirus group. Cotransfection of enhancerless SV40 DNA with randomly fragmented HCMV DNA yielded two SV40-HCMV recombinant viruses that had incorporated overlapping segments of HCMV DNA to substitute for the missing SV40 enhancer. Within HCMV, these enhancer sequences are located upstream of the transcription initiation site of the major immediate-early gene, between nucleotides -118 and −524. Deletion studies with the HCMV enhancer, which harbors a variety of repeated sequence motifs, show that different subsets of this enhancer can substitute for the SV40 enhancer. The HCMV enhancer, which seems to have little cell type or species preference, is severalfold more active than the SV40 enhancer. It is the strongest enhancer we have analyzed so far, a property that makes it a useful component of eukaryotic expression vectors
The strong enhancer element in the immediate early region of the human cytomegalovirus genome
The human cytomegalovirus (HCMV), a
member of the herpesvirus group, was found to
possess a strong transcription enhancer in the
immediate early gene region. Co-transfection
of enhancerless SV40 DNA with randomly fragmented
HCMV DNA yielded two SV40-like recombinant
viruses , each containing HCMV DNA fragments that
were substituting for the missing SV40 enhancer.
The two inserts , 341 and 262 bp in length , are
overlapping segments of genuine viral DNA representing
part of the 5'flanking region of the
major immedistte early gene i n HCMV. Studies
with deletion mutants showed that different nonoverlapping
subsets of the HCMV enhancer region
can substitute for the 72 bp repeats of SV40.
Transient expression assays indicated that the
HCMV enhancer is significantly stronger than the
SV40 element, activating cis-linked heterologous
promoters in a wide spectrum of cultured cells.
It appears that the HCMV enhancer is positively
regulated by viral immediate early genes
Recommended from our members
Large-scale discovery of enhancers from human heart tissue.
Development and function of the human heart depend on the dynamic control of tissue-specific gene expression by distant-acting transcriptional enhancers. To generate an accurate genome-wide map of human heart enhancers, we used an epigenomic enhancer discovery approach and identified ∼6,200 candidate enhancer sequences directly from fetal and adult human heart tissue. Consistent with their predicted function, these elements were markedly enriched near genes implicated in heart development, function and disease. To further validate their in vivo enhancer activity, we tested 65 of these human sequences in a transgenic mouse enhancer assay and observed that 43 (66%) drove reproducible reporter gene expression in the heart. These results support the discovery of a genome-wide set of noncoding sequences highly enriched in human heart enhancers that is likely to facilitate downstream studies of the role of enhancers in development and pathological conditions of the heart
HoxA9 binds and represses the Cebpa +8 kb enhancer
C/EBPα plays a key role in specifying myeloid lineage development. HoxA9 is expressed in myeloid progenitors, with its level diminishing during myeloid maturation, and HOXA9 is over-expressed in a majority of acute myeloid leukemia cases, including those expressing NUP98-HOXD13. The objective of this study was to determine whether HoxA9 directly represses Cebpa gene expression. We find 4-fold increased HoxA9 and 5-fold reduced Cebpa in marrow common myeloid and LSK progenitors from Vav-NUP98-HOXD13 transgenic mice. Conversely, HoxA9 decreases 5-fold while Cebpa increases during granulocytic differentiation of 32Dcl3 myeloid cells. Activation of exogenous HoxA9-ER in 32Dcl3 cells reduces Cebpa mRNA even in the presence of cycloheximide, suggesting direct repression. Cebpa transcription in murine myeloid cells is regulated by a hematopoietic-specific +37 kb enhancer and by a more widely active +8 kb enhancer. ChIP-Seq analysis of primary myeloid progenitor cells expressing exogenous HoxA9 or HoxA9-ER demonstrates that HoxA9 localizes to both the +8 kb and +37 kb Cebpa enhancers. Gel shift analysis demonstrates HoxA9 binding to three consensus sites in the +8 kb enhancer, but no affinity for the single near-consensus site present in the +37 kb enhancer. Activity of a Cebpa +8 kb enhancer/promoter-luciferase reporter in 32Dcl3 or MOLM14 myeloid cells is increased ~2-fold by mutation of its three HOXA9-binding sites, suggesting that endogenous HoxA9 represses +8 kb Cebpa enhancer activity. In contrast, mutation of five C/EBPα-binding sites in the +8 kb enhancer reduces activity 3-fold. Finally, expression of a +37 kb enhancer/promoter-hCD4 transgene reporter is reduced ~2-fold in marrow common myeloid progenitors when the Vav-NUP98-HOXD13 transgene is introduced. Overall, these data support the conclusion that HoxA9 represses Cebpa expression, at least in part via inhibition of its +8 kb enhancer, potentially allowing normal myeloid progenitors to maintain immaturity and contributing to the pathogenesis of acute myeloid leukemia associated with increased HOXA9
Modulation of enhancer looping and differential gene targeting by Epstein-Barr virus transcription factors directs cellular reprogramming
Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of enhancer-promoter interactions by viral transcription factors
Recommended from our members
Creating New β-Globin-Expressing Lentiviral Vectors by High-Resolution Mapping of Locus Control Region Enhancer Sequences.
Hematopoietic stem cell gene therapy is a promising approach for treating disorders of the hematopoietic system. Identifying combinations of cis-regulatory elements that do not impede packaging or transduction efficiency when included in lentiviral vectors has proven challenging. In this study, we deploy LV-MPRA (lentiviral vector-based, massively parallel reporter assay), an approach that simultaneously analyzes thousands of synthetic DNA fragments in parallel to identify sequence-intrinsic and lineage-specific enhancer function at near-base-pair resolution. We demonstrate the power of LV-MPRA in elucidating the boundaries of previously unknown intrinsic enhancer sequences of the human β-globin locus control region. Our approach facilitated the rapid assembly of novel therapeutic βAS3-globin lentiviral vectors harboring strong lineage-specific recombinant control elements capable of correcting a mouse model of sickle cell disease. LV-MPRA can be used to map any genomic locus for enhancer activity and facilitates the rapid development of therapeutic vectors for treating disorders of the hematopoietic system or other specific tissues and cell types
Oligonucleotide that binds nuclear factor NF-kappa-B acts as a lymphoid-specific and inducible enhancer element
The immunoglobulin kappa light chain gene contains a lymphoid-specific enhancer that includes several short protein-binding sequences. The sequence that binds the nuclear factor NF-kappa B was tested for its ability to act independently as an enhancer element by inserting it into test plasmids containing the chloramphenicol acetyltransferase gene. When analyzed for activity by transient transfection into lymphoid and nonlymphoid cells, a single copy of the NF-kappa B binding site could act as a tissue-specific upstream activating element. Two copies (dimer) showed 10-fold higher activity than did one copy and could act as an enhancer element 2.5 kilobases downstream of the transcriptional start site. The enhancer activity of this sequence was correlated with the presence of the cognate binding protein, NF-kappa B. This sequence acted as an inducible enhancer under conditions that induce NF-kappa B binding activity. Thus, the NF-kappa B binding site acts by itself as a tissue-specific and inducible enhancer element, and two copies show cooperative interaction
A long and complex enhancer activates transcription of the gene coding for the highly abundant immediate early mRNA in murine cytomegalovirus
Using the simian virus 40 "enhancer trap"
approach, we have identified a transcription enhancer located
just upstream of the major immediate early gene of murine
cytomegalovirus. This enhancer has several striking properties.
(.) Together with the enhancer ofhuman cytomegalovirus,
it is the strongest transcription enhancer found to date. (ö) It
is an extremely long enhancer, spanning >700 base pairs. (ÜI)
It consists of a rather complex pattern of sequence repeats, the
longest of which is 181 base pairs. Also, several types of short
sequence motifs are scattered throughout the enhancer in
monomeric, heterodimeric, or homodimeric (palindromic)
form. These motifs have been identified to be components of
other enhancers and promoters, and they are presumably
binding sites for specific nuclear factors. Our analysis suggests
that enhancers are composed of a modular arrangement of
short conserved sequence motifs and that enhancer strength is
correlated with the redundancy of these motifs
- …
