1,011,557 research outputs found

    Enhanced Sampling in the Well-Tempered Ensemble

    Full text link
    We introduce the well-tempered ensemble (WTE) which is the biased ensemble sampled by well-tempered metadynamics when the energy is used as collective variable. WTE can be designed so as to have approximately the same average energy as the canonical ensemble but much larger fluctuations. These two properties lead to an extremely fast exploration of phase space. An even greater efficiency is obtained when WTE is combined with parallel tempering. Unbiased Boltzmann averages are computed on the fly by a recently developed reweighting method [M. Bonomi et al. J. Comput. Chem. 30, 1615 (2009)]. We apply WTE and its parallel tempering variant to the 2d Ising model and to a Go-model of HIV protease, demonstrating in these two representative cases that convergence is accelerated by orders of magnitude.Comment: 7 pages, 5 figure

    Unfolding Hidden Barriers by Active Enhanced Sampling

    Full text link
    Collective variable (CV) or order parameter based enhanced sampling algorithms have achieved great success due to their ability to efficiently explore the rough potential energy landscapes of complex systems. However, the degeneracy of microscopic configurations, originating from the orthogonal space perpendicular to the CVs, is likely to shadow "hidden barriers" and greatly reduce the efficiency of CV-based sampling. Here we demonstrate that systematic machine learning CV, through enhanced sampling, can iteratively lift such degeneracies on the fly. We introduce an active learning scheme that consists of a parametric CV learner based on deep neural network and a CV-based enhanced sampler. Our active enhanced sampling (AES) algorithm is capable of identifying the least informative regions based on a historical sample, forming a positive feedback loop between the CV learner and sampler. This approach is able to globally preserve kinetic characteristics by incrementally enhancing both sample completeness and CV quality.Comment: 5 pages, 3 figure

    Reweighted Autoencoded Variational Bayes for Enhanced Sampling (RAVE)

    Full text link
    Here we propose the Reweighted Autoencoded Variational Bayes for Enhanced Sampling (RAVE) method, a new iterative scheme that uses the deep learning framework of variational autoencoders to enhance sampling in molecular simulations. RAVE involves iterations between molecular simulations and deep learning in order to produce an increasingly accurate probability distribution along a low-dimensional latent space that captures the key features of the molecular simulation trajectory. Using the Kullback-Leibler divergence between this latent space distribution and the distribution of various trial reaction coordinates sampled from the molecular simulation, RAVE determines an optimum, yet nonetheless physically interpretable, reaction coordinate and optimum probability distribution. Both then directly serve as the biasing protocol for a new biased simulation, which is once again fed into the deep learning module with appropriate weights accounting for the bias, the procedure continuing until estimates of desirable thermodynamic observables are converged. Unlike recent methods using deep learning for enhanced sampling purposes, RAVE stands out in that (a) it naturally produces a physically interpretable reaction coordinate, (b) is independent of existing enhanced sampling protocols to enhance the fluctuations along the latent space identified via deep learning, and (c) it provides the ability to easily filter out spurious solutions learned by the deep learning procedure. The usefulness and reliability of RAVE is demonstrated by applying it to model potentials of increasing complexity, including computation of the binding free energy profile for a hydrophobic ligand-substrate system in explicit water with dissociation time of more than three minutes, in computer time at least twenty times less than that needed for umbrella sampling or metadynamics

    Transferable neural networks for enhanced sampling of protein dynamics

    Full text link
    Variational auto-encoder frameworks have demonstrated success in reducing complex nonlinear dynamics in molecular simulation to a single non-linear embedding. In this work, we illustrate how this non-linear latent embedding can be used as a collective variable for enhanced sampling, and present a simple modification that allows us to rapidly perform sampling in multiple related systems. We first demonstrate our method is able to describe the effects of force field changes in capped alanine dipeptide after learning a model using AMBER99. We further provide a simple extension to variational dynamics encoders that allows the model to be trained in a more efficient manner on larger systems by encoding the outputs of a linear transformation using time-structure based independent component analysis (tICA). Using this technique, we show how such a model trained for one protein, the WW domain, can efficiently be transferred to perform enhanced sampling on a related mutant protein, the GTT mutation. This method shows promise for its ability to rapidly sample related systems using a single transferable collective variable and is generally applicable to sets of related simulations, enabling us to probe the effects of variation in increasingly large systems of biophysical interest.Comment: 20 pages, 10 figure

    Enhanced sampling of multidimensional free-energy landscapes using adaptive biasing forces

    Full text link
    We propose an adaptive biasing algorithm aimed at enhancing the sampling of multimodal measures by Langevin dynamics. The underlying idea consists in generalizing the standard adaptive biasing force method commonly used in conjunction with molecular dynamics to handle in a more effective fashion multidimensional reaction coordinates. The proposed approach is anticipated to be particularly useful for reaction coordinates, the components of which are weakly coupled, as illuminated in a mathematical analysis of the long-time convergence of the algorithm. The strength as well as the intrinsic limitation of the method are discussed and illustrated in two realistic test cases
    corecore