1,232,407 research outputs found

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    Energy Optimization of Robotic Cells

    Full text link
    This study focuses on the energy optimization of industrial robotic cells, which is essential for sustainable production in the long term. A holistic approach that considers a robotic cell as a whole toward minimizing energy consumption is proposed. The mathematical model, which takes into account various robot speeds, positions, power-saving modes, and alternative orders of operations, can be transformed into a mixed-integer linear programming formulation that is, however, suitable only for small instances. To optimize complex robotic cells, a hybrid heuristic accelerated by using multicore processors and the Gurobi simplex method for piecewise linear convex functions is implemented. The experimental results showed that the heuristic solved 93 % of instances with a solution quality close to a proven lower bound. Moreover, compared with the existing works, which typically address problems with three to four robots, this study solved real-size problem instances with up to 12 robots and considered more optimization aspects. The proposed algorithms were also applied on an existing robotic cell in \v{S}koda Auto. The outcomes, based on simulations and measurements, indicate that, compared with the previous state (at maximal robot speeds and without deeper power-saving modes), the energy consumption can be reduced by about 20 % merely by optimizing the robot speeds and applying power-saving modes. All the software and generated datasets used in this research are publicly available.Comment: Journal paper published in IEEE Industrial Informatic

    A Multiscale Framework for Challenging Discrete Optimization

    Full text link
    Current state-of-the-art discrete optimization methods struggle behind when it comes to challenging contrast-enhancing discrete energies (i.e., favoring different labels for neighboring variables). This work suggests a multiscale approach for these challenging problems. Deriving an algebraic representation allows us to coarsen any pair-wise energy using any interpolation in a principled algebraic manner. Furthermore, we propose an energy-aware interpolation operator that efficiently exposes the multiscale landscape of the energy yielding an effective coarse-to-fine optimization scheme. Results on challenging contrast-enhancing energies show significant improvement over state-of-the-art methods.Comment: 5 pages, 1 figure, To appear in NIPS Workshop on Optimization for Machine Learning (December 2012). Camera-ready version. Fixed typos, acknowledgements adde

    Joint Optimal Pricing and Electrical Efficiency Enforcement for Rational Agents in Micro Grids

    Full text link
    In electrical distribution grids, the constantly increasing number of power generation devices based on renewables demands a transition from a centralized to a distributed generation paradigm. In fact, power injection from Distributed Energy Resources (DERs) can be selectively controlled to achieve other objectives beyond supporting loads, such as the minimization of the power losses along the distribution lines and the subsequent increase of the grid hosting capacity. However, these technical achievements are only possible if alongside electrical optimization schemes, a suitable market model is set up to promote cooperation from the end users. In contrast with the existing literature, where energy trading and electrical optimization of the grid are often treated separately or the trading strategy is tailored to a specific electrical optimization objective, in this work we consider their joint optimization. Specifically, we present a multi-objective optimization problem accounting for energy trading, where: 1) DERs try to maximize their profit, resulting from selling their surplus energy, 2) the loads try to minimize their expense, and 3) the main power supplier aims at maximizing the electrical grid efficiency through a suitable discount policy. This optimization problem is proved to be non convex, and an equivalent convex formulation is derived. Centralized solutions are discussed first, and are subsequently distributed. Numerical results to demonstrate the effectiveness of the so obtained optimal policies are then presented

    Optimizing the flash-RAM energy trade-off in deeply embedded systems

    Full text link
    Deeply embedded systems often have the tightest constraints on energy consumption, requiring that they consume tiny amounts of current and run on batteries for years. However, they typically execute code directly from flash, instead of the more energy efficient RAM. We implement a novel compiler optimization that exploits the relative efficiency of RAM by statically moving carefully selected basic blocks from flash to RAM. Our technique uses integer linear programming, with an energy cost model to select a good set of basic blocks to place into RAM, without impacting stack or data storage. We evaluate our optimization on a common ARM microcontroller and succeed in reducing the average power consumption by up to 41% and reducing energy consumption by up to 22%, while increasing execution time. A case study is presented, where an application executes code then sleeps for a period of time. For this example we show that our optimization could allow the application to run on battery for up to 32% longer. We also show that for this scenario the total application energy can be reduced, even if the optimization increases the execution time of the code

    Domestic energy management methodology for optimizing efficiency in Smart Grids

    Get PDF
    Increasing energy prices and the greenhouse effect lead to more awareness of energy efficiency of electricity supply. During the last years, a lot of domestic technologies have been developed to improve this efficiency. These technologies on their own already improve the efficiency, but more can be gained by a combined management. Multiple optimization objectives can be used to improve the efficiency, from peak shaving and Virtual Power Plant (VPP) to adapting to fluctuating generation of wind turbines. In this paper a generic management methology is proposed applicable for most domestic technologies, scenarios and optimization objectives. Both local scale optimization objectives (a single house) and global scale optimization objectives (multiple houses) can be used. Simulations of different scenarios show that both local and global objectives can be reached
    corecore