10,990 research outputs found

    Efficient end-to-end learning for quantizable representations

    Full text link
    Embedding representation learning via neural networks is at the core foundation of modern similarity based search. While much effort has been put in developing algorithms for learning binary hamming code representations for search efficiency, this still requires a linear scan of the entire dataset per each query and trades off the search accuracy through binarization. To this end, we consider the problem of directly learning a quantizable embedding representation and the sparse binary hash code end-to-end which can be used to construct an efficient hash table not only providing significant search reduction in the number of data but also achieving the state of the art search accuracy outperforming previous state of the art deep metric learning methods. We also show that finding the optimal sparse binary hash code in a mini-batch can be computed exactly in polynomial time by solving a minimum cost flow problem. Our results on Cifar-100 and on ImageNet datasets show the state of the art search accuracy in precision@k and NMI metrics while providing up to 98X and 478X search speedup respectively over exhaustive linear search. The source code is available at https://github.com/maestrojeong/Deep-Hash-Table-ICML18Comment: Accepted and to appear at ICML 2018. Camera ready versio

    End-to-end Learning for Short Text Expansion

    Full text link
    Effectively making sense of short texts is a critical task for many real world applications such as search engines, social media services, and recommender systems. The task is particularly challenging as a short text contains very sparse information, often too sparse for a machine learning algorithm to pick up useful signals. A common practice for analyzing short text is to first expand it with external information, which is usually harvested from a large collection of longer texts. In literature, short text expansion has been done with all kinds of heuristics. We propose an end-to-end solution that automatically learns how to expand short text to optimize a given learning task. A novel deep memory network is proposed to automatically find relevant information from a collection of longer documents and reformulate the short text through a gating mechanism. Using short text classification as a demonstrating task, we show that the deep memory network significantly outperforms classical text expansion methods with comprehensive experiments on real world data sets.Comment: KDD'201

    Neural End-to-End Learning for Computational Argumentation Mining

    Full text link
    We investigate neural techniques for end-to-end computational argumentation mining (AM). We frame AM both as a token-based dependency parsing and as a token-based sequence tagging problem, including a multi-task learning setup. Contrary to models that operate on the argument component level, we find that framing AM as dependency parsing leads to subpar performance results. In contrast, less complex (local) tagging models based on BiLSTMs perform robustly across classification scenarios, being able to catch long-range dependencies inherent to the AM problem. Moreover, we find that jointly learning 'natural' subtasks, in a multi-task learning setup, improves performance.Comment: To be published at ACL 201
    corecore