11,779 research outputs found

    Attentional demand influences strategies for encoding into visual working memory

    Get PDF
    Visual selective attention and visual working memory (WM) share the same capacity-limited resources. We investigated whether and how participants can cope with a task in which these 2 mechanisms interfere. The task required participants to scan an array of 9 objects in order to select the target locations and to encode the items presented at these locations into WM (1 to 5 shapes). Determination of the target locations required either few attentional resources (“popout condition”) or an attention-demanding serial search (“non pop-out condition”). Participants were able to achieve high memory performance in all stimulation conditions but, in the non popout conditions, this came at the cost of additional processing time. Both empirical evidence and subjective reports suggest that participants invested the additional time in memorizing the locations of all target objects prior to the encoding of their shapes into WM. Thus, they seemed to be unable to interleave the steps of search with those of encoding. We propose that the memory for target locations substitutes for perceptual pop-out and thus may be the key component that allows for flexible coping with the common processing limitations of visual WM and attention. The findings have implications for understanding how we cope with real-life situations in which the demands on visual attention and WM occur simultaneously. Keywords: attention, working memory, interference, encoding strategie

    Functional imaging reveals working memory and attention interact to produce the attentional blink

    Get PDF
    Copyright @ 2012 Massachusetts Institute of Technology PressIf two centrally presented visual stimuli occur within approximately half a second of each other, the second target often fails to be reported correctly. This effect, called the attentional blink (AB; Raymond, J. E., Shapiro, K. L., & Arnell, K. M. Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of Experimental Psychology, Human Perception and Performance, 18, 849-860, 1992], has been attributed to a resource "bottleneck," likely arising as a failure of attention during encoding into or retrieval from visual working memory (WM). Here we present participants with a hybrid WM-AB study while they undergo fMRI to provide insight into the neural underpinnings of this bottleneck. Consistent with a WM-based bottleneck account, fronto-parietal brain areas exhibited a WM load-dependent modulation of neural responses during the AB task. These results are consistent with the view that WM and attention share a capacity-limited resource and provide insight into the neural structures that underlie resource allocation in tasks requiring joint use of WM and attention.This research was supported by a project grant (071944) from the Wellcome Trust to Kimron Shapiro

    Memory in autism spectrum disorder: a meta-analysis of experimental studies

    Get PDF
    To address inconsistencies in the literature on memory in Autism Spectrum Disorder (ASD), we report the first ever meta-analysis of short-term (STM) and episodic long-term (LTM) memory in ASD, evaluating the effects of type of material, type of retrieval and the role of inter-item relations. Analysis of 64 studies comparing individuals with ASD and typical development (TD) showed greater difficulties in ASD compared to TD individuals in STM (Hedges’ g=-0.53 [95%CI -0.90; -0.16], p=.005, I²=96%) compared to LTM (g=-0.30 [95%CI -0.42; -0.17], p<.00001, I²=24%), a small difficulty in verbal LTM (g=-0.21, p=.01), contrasting with a medium difficulty for visual LTM (g= -0.41, p=.0002) in ASD compared to TD individuals. We also found a general diminution in free recall compared to cued recall and recognition (LTM, free recall: g=-0.38, p<.00001, cued recall: g=-0.08, p=.58, recognition: g=-0.15, p=.16; STM, free recall: g=-0.59, p=.004, recognition: g=-0.33, p=.07). We discuss these results in terms of their relation to semantic memory. The limited diminution in verbal LTM and preserved overall recognition and cued recall (supported retrieval) may result from a greater overlap of these tasks with semantic long-term representations which are overall preserved in ASD. By contrast, difficulties in STM or free recall may result from less overlap with the semantic system or may involve additional cognitive operations and executive demands. These findings highlight the need to support STM functioning in ASD and acknowledge the potential benefit of using verbal materials at encoding and broader forms of memory support at retrieval to enhance performance

    Attention to attributes and objects in working memory

    Get PDF
    It has been debated on the basis of change-detection procedures whether visual working memory is limited by the number of objects, task-relevant attributes within those objects, or bindings between attributes. This debate, however, has been hampered by several limitations, including the use of conditions that vary between studies and the absence of appropriate mathematical models to estimate the number of items in working memory in different stimulus conditions. We re-examined working memory limits in two experiments with a wide array of conditions involving color and shape attributes, relying on a set of new models to fit various stimulus situations. In Experiment 2, a new procedure allowed identical retrieval conditions across different conditions of attention at encoding. The results show that multiple attributes compete for attention, but that retaining the binding between attributes is accomplished only by retaining the attributes themselves. We propose a theoretical account in which a fixed object capacity limit contains within it the possibility of the incomplete retention of object attributes, depending on the direction of attention

    Mapping dynamic interactions among cognitive biases in depression

    Get PDF
    Depression is theorized to be caused in part by biased cognitive processing of emotional information. Yet, prior research has adopted a reductionist approach that does not characterize how biases in cognitive processes such as attention and memory work together to confer risk for this complex multifactorial disorder. Grounded in affective and cognitive science, we highlight four mechanisms to understand how attention biases, working memory difficulties, and long-term memory biases interact and contribute to depression. We review evidence for each mechanism and highlight time- and context-dependent dynamics. We outline methodological considerations and recommendations for research in this area. We conclude with directions to advance the understanding of depression risk, cognitive training interventions, and transdiagnostic properties of cognitive biases and their interactions

    Alterations in functional brain network structure induced by subchronic phencyclidine (PCP) treatment parallel those seen in schizophrenia

    Get PDF
    Abstract of poster presentation shown at the 2nd Biennial Schizophrenia International Research Conference on Alterations in functional brain network structure induced by subchronic phencyclidine (PCP) treatment parallel those seen in schizophrenia

    Neural blackboard architectures of combinatorial structures in cognition

    Get PDF
    Human cognition is unique in the way in which it relies on combinatorial (or compositional) structures. Language provides ample evidence for the existence of combinatorial structures, but they can also be found in visual cognition. To understand the neural basis of human cognition, it is therefore essential to understand how combinatorial structures can be instantiated in neural terms. In his recent book on the foundations of language, Jackendoff described four fundamental problems for a neural instantiation of combinatorial structures: the massiveness of the binding problem, the problem of 2, the problem of variables and the transformation of combinatorial structures from working memory to long-term memory. This paper aims to show that these problems can be solved by means of neural ‘blackboard’ architectures. For this purpose, a neural blackboard architecture for sentence structure is presented. In this architecture, neural structures that encode for words are temporarily bound in a manner that preserves the structure of the sentence. It is shown that the architecture solves the four problems presented by Jackendoff. The ability of the architecture to instantiate sentence structures is illustrated with examples of sentence complexity observed in human language performance. Similarities exist between the architecture for sentence structure and blackboard architectures for combinatorial structures in visual cognition, derived from the structure of the visual cortex. These architectures are briefly discussed, together with an example of a combinatorial structure in which the blackboard architectures for language and vision are combined. In this way, the architecture for language is grounded in perception

    Layout Decomposition for Quadruple Patterning Lithography and Beyond

    Full text link
    For next-generation technology nodes, multiple patterning lithography (MPL) has emerged as a key solution, e.g., triple patterning lithography (TPL) for 14/11nm, and quadruple patterning lithography (QPL) for sub-10nm. In this paper, we propose a generic and robust layout decomposition framework for QPL, which can be further extended to handle any general K-patterning lithography (K>>4). Our framework is based on the semidefinite programming (SDP) formulation with novel coloring encoding. Meanwhile, we propose fast yet effective coloring assignment and achieve significant speedup. To our best knowledge, this is the first work on the general multiple patterning lithography layout decomposition.Comment: DAC'201

    Similarity, Not Complexity, Determines Visual Working Memory Performance

    Get PDF
    A number of studies have shown that visual working memory (WM) is poorer for complex versus simple items, traditionally accounted for by higher information load placing greater demands on encoding and storage capacity limits. Other research suggests that it may not be complexity that determines WM performance per se, but rather increased perceptual similarity between complex items as a result of a large amount of overlapping information. Increased similarity is thought to lead to greater comparison errors between items encoded into WM and the test item(s) presented at retrieval. However, previous studies have used different object categories to manipulate complexity and similarity, raising questions as to whether these effects are simply due to cross-category differences. For the first time, here the relationship between complexity and similarity in WM using the same stimulus category (abstract polygons) are investigated. The authors used a delayed discrimination task to measure WM for 1–4 complex versus simple simultaneously presented items and manipulated the similarity between the single test item at retrieval and the sample items at encoding. WM was poorer for complex than simple items only when the test item was similar to 1 of the encoding items, and not when it was dissimilar or identical. The results provide clear support for reinterpretation of the complexity effect in WM as a similarity effect and highlight the importance of the retrieval stage in governing WM performance. The authors discuss how these findings can be reconciled with current models of WM capacity limits
    corecore