624,134 research outputs found

    Knowledge Graph Embedding with Iterative Guidance from Soft Rules

    Full text link
    Embedding knowledge graphs (KGs) into continuous vector spaces is a focus of current research. Combining such an embedding model with logic rules has recently attracted increasing attention. Most previous attempts made a one-time injection of logic rules, ignoring the interactive nature between embedding learning and logical inference. And they focused only on hard rules, which always hold with no exception and usually require extensive manual effort to create or validate. In this paper, we propose Rule-Guided Embedding (RUGE), a novel paradigm of KG embedding with iterative guidance from soft rules. RUGE enables an embedding model to learn simultaneously from 1) labeled triples that have been directly observed in a given KG, 2) unlabeled triples whose labels are going to be predicted iteratively, and 3) soft rules with various confidence levels extracted automatically from the KG. In the learning process, RUGE iteratively queries rules to obtain soft labels for unlabeled triples, and integrates such newly labeled triples to update the embedding model. Through this iterative procedure, knowledge embodied in logic rules may be better transferred into the learned embeddings. We evaluate RUGE in link prediction on Freebase and YAGO. Experimental results show that: 1) with rule knowledge injected iteratively, RUGE achieves significant and consistent improvements over state-of-the-art baselines; and 2) despite their uncertainties, automatically extracted soft rules are highly beneficial to KG embedding, even those with moderate confidence levels. The code and data used for this paper can be obtained from https://github.com/iieir-km/RUGE.Comment: To appear in AAAI 201

    LATTE: Application Oriented Social Network Embedding

    Full text link
    In recent years, many research works propose to embed the network structured data into a low-dimensional feature space, where each node is represented as a feature vector. However, due to the detachment of embedding process with external tasks, the learned embedding results by most existing embedding models can be ineffective for application tasks with specific objectives, e.g., community detection or information diffusion. In this paper, we propose study the application oriented heterogeneous social network embedding problem. Significantly different from the existing works, besides the network structure preservation, the problem should also incorporate the objectives of external applications in the objective function. To resolve the problem, in this paper, we propose a novel network embedding framework, namely the "appLicAtion orienTed neTwork Embedding" (Latte) model. In Latte, the heterogeneous network structure can be applied to compute the node "diffusive proximity" scores, which capture both local and global network structures. Based on these computed scores, Latte learns the network representation feature vectors by extending the autoencoder model model to the heterogeneous network scenario, which can also effectively unite the objectives of network embedding and external application tasks. Extensive experiments have been done on real-world heterogeneous social network datasets, and the experimental results have demonstrated the outstanding performance of Latte in learning the representation vectors for specific application tasks.Comment: 11 Pages, 12 Figures, 1 Tabl

    Embedding of Virtual Network Requests over Static Wireless Multihop Networks

    Full text link
    Network virtualization is a technology of running multiple heterogeneous network architecture on a shared substrate network. One of the crucial components in network virtualization is virtual network embedding, which provides a way to allocate physical network resources (CPU and link bandwidth) to virtual network requests. Despite significant research efforts on virtual network embedding in wired and cellular networks, little attention has been paid to that in wireless multi-hop networks, which is becoming more important due to its rapid growth and the need to share these networks among different business sectors and users. In this paper, we first study the root causes of new challenges of virtual network embedding in wireless multi-hop networks, and propose a new embedding algorithm that efficiently uses the resources of the physical substrate network. We examine our algorithm's performance through extensive simulations under various scenarios. Due to lack of competitive algorithms, we compare the proposed algorithm to five other algorithms, mainly borrowed from wired embedding or artificially made by us, partially with or without the key algorithmic ideas to assess their impacts.Comment: 22 page

    Temporal word embeddings for dynamic user profiling in Twitter

    Get PDF
    The research described in this paper focused on exploring the domain of user profiling, a nascent and contentious technology which has been steadily attracting increased interest from the research community as its potential for providing personalised digital services is realised. An extensive review of related literature revealed that limited research has been conducted into how temporal aspects of users can be captured using user profiling techniques. This, coupled with the notable lack of research into the use of word embedding techniques to capture temporal variances in language, revealed an opportunity to extend the Random Indexing word embedding technique such that the interests of users could be modelled based on their use of language. To achieve this, this work concerned itself with extending an existing implementation of Temporal Random Indexing to model Twitter users across multiple granularities of time based on their use of language. The product of this is a novel technique for temporal user profiling, where a set of vectors is used to describe the evolution of a Twitter user’s interests over time through their use of language. The vectors produced were evaluated against a temporal implementation of another state-of-the-art word embedding technique, the Word2Vec Dynamic Independent Skip-gram model, where it was found that Temporal Random Indexing outperformed Word2Vec in the generation of temporal user profiles

    Learning Social Image Embedding with Deep Multimodal Attention Networks

    Full text link
    Learning social media data embedding by deep models has attracted extensive research interest as well as boomed a lot of applications, such as link prediction, classification, and cross-modal search. However, for social images which contain both link information and multimodal contents (e.g., text description, and visual content), simply employing the embedding learnt from network structure or data content results in sub-optimal social image representation. In this paper, we propose a novel social image embedding approach called Deep Multimodal Attention Networks (DMAN), which employs a deep model to jointly embed multimodal contents and link information. Specifically, to effectively capture the correlations between multimodal contents, we propose a multimodal attention network to encode the fine-granularity relation between image regions and textual words. To leverage the network structure for embedding learning, a novel Siamese-Triplet neural network is proposed to model the links among images. With the joint deep model, the learnt embedding can capture both the multimodal contents and the nonlinear network information. Extensive experiments are conducted to investigate the effectiveness of our approach in the applications of multi-label classification and cross-modal search. Compared to state-of-the-art image embeddings, our proposed DMAN achieves significant improvement in the tasks of multi-label classification and cross-modal search
    corecore