299,999 research outputs found
Temporal Landscapes: A Graphical Temporal Logic for Reasoning
We present an elementary introduction to a new logic for reasoning about
behaviors that occur over time. This logic is based on temporal type theory.
The syntax of the logic is similar to the usual first-order logic; what differs
is the notion of truth value. Instead of reasoning about whether formulas are
true or false, our logic reasons about temporal landscapes. A temporal
landscape may be thought of as representing the set of durations over which a
statement is true. To help understand the practical implications of this
approach, we give a wide variety of examples where this logic is used to reason
about autonomous systems.Comment: 20 pages, lots of figure
A presentation theorem for continuous logic and Metric Abstract Elementary Classes
We give a presentation theorem for continuous first-order logic and Metric
Abstract Elementary classes in terms of and Abstract
Elementary Classes, respectively. This presentation is accomplished by
analyzing dense subsets that are closed under functions. We extend this
correspondence to types and saturation
Bisimulation in Inquisitive Modal Logic
Inquisitive modal logic, InqML, is a generalisation of standard Kripke-style
modal logic. In its epistemic incarnation, it extends standard epistemic logic
to capture not just the information that agents have, but also the questions
that they are interested in. Technically, InqML fits within the family of
logics based on team semantics. From a model-theoretic perspective, it takes us
a step in the direction of monadic second-order logic, as inquisitive modal
operators involve quantification over sets of worlds. We introduce and
investigate the natural notion of bisimulation equivalence in the setting of
InqML. We compare the expressiveness of InqML and first-order logic, and
characterise inquisitive modal logic as the bisimulation invariant fragments of
first-order logic over various classes of two-sorted relational structures.
These results crucially require non-classical methods in studying bisimulations
and first-order expressiveness over non-elementary classes.Comment: In Proceedings TARK 2017, arXiv:1707.0825
Multitask Evolution with Cartesian Genetic Programming
We introduce a genetic programming method for solving multiple Boolean
circuit synthesis tasks simultaneously. This allows us to solve a set of
elementary logic functions twice as easily as with a direct, single-task
approach.Comment: 2 page
Rules and derivations in an elementary logic course
When teaching an elementary logic course to students who have a general
scientific background but have never been exposed to logic, we have to face the
problem that the notions of deduction rule and of derivation are completely new
to them, and are related to nothing they already know, unlike, for instance,
the notion of model, that can be seen as a generalization of the notion of
algebraic structure. In this note, we defend the idea that one strategy to
introduce these notions is to start with the notion of inductive definition
[1]. Then, the notion of derivation comes naturally. We also defend the idea
that derivations are pervasive in logic and that defining precisely this notion
at an early stage is a good investment to later define other notions in proof
theory, computability theory, automata theory, ... Finally, we defend the idea
that to define the notion of derivation precisely, we need to distinguish two
notions of derivation: labeled with elements and labeled with rule names. This
approach has been taken in [2]
- …
