50,344 research outputs found
Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions
Over the past decade, tremendous progress has been achieved in the development of nanoscale semiconductor materials with a wide range of bandgaps by alloying different individual semiconductors. These materials include traditional II-VI and III-V semiconductors and their alloys, inorganic and hybrid perovskites, and the newly emerging 2D materials. One important common feature of these materials is that their nanoscale dimensions result in a large tolerance to lattice mismatches within a monolithic structure of varying composition or between the substrate and target material, which enables us to achieve almost arbitrary control of the variation of the alloy composition. As a result, the bandgaps of these alloys can be widely tuned without the detrimental defects that are often unavoidable in bulk materials, which have a much more limited tolerance to lattice mismatches. This class of nanomaterials could have a far-reaching impact on a wide range of photonic applications, including tunable lasers, solid-state lighting, artificial photosynthesis and new solar cells
Semiconductor grade, solar silicon purification project
The conversion of metallurgical grade silicon into semiconductor grade silicon by way of a three step SiF2 polymer transport purification process was investigated. Developments in the following areas were also examined: (1) spectroscopic analysis and characterization of (SiF2) sub x polymer and Si sub x F sub y homologue conversion; (2) demonstration runs on the near continuous apparatus; (3) economic analysis; and (4) elemental analysis
Atomically thin group-V elemental films: theoretical investigations of antimonene allotropes
Group-V elemental monolayers including phosphorene are emerging as promising
2D materials with semiconducting electronic properties. Here, we present the
results of first principles calculations on stability, mechanical and
electronic properties of 2D antimony (Sb), antimonene. Our calculations show
that free-standing {\alpha} and \b{eta} allotropes of antimonene are stable and
semiconducting. The {\alpha}-Sb has a puckered structure with two atomic
sub-layers and \b{eta}-Sb has a buckled hexagonal lattice. The calculated Raman
spectra and STM images have distinct features thus facilitating
characterization of both allotropes. The \b{eta}-Sb has nearly isotropic
mechanical properties while {\alpha}-Sb shows strongly anisotropic
characteristics. An indirect-direct band gap transition is expected with
moderate tensile strains applied to the monolayers, which opens up the
possibility of their applications in optoelectronics
Method and apparatus for determining time, direction, and composition of impacting space particles
A space particle collector for recording the time specific particles are captured, and its direction at the time of capture, utilizes an array of targets, each comprised of an MOS capacitor on a chip charged from an external source and discharged upon impact by a particle through a tab on the chip that serves as a fuse. Any impacting particle creates a crater, but only the first will cause a discharge of the capacitor. A substantial part of the metal film around the first crater is burned off by the discharge current. The time of the impulse which burns the tab, and the identification of the target, is recorded together with data from flight instruments. The metal film is partitioned into pie sections to provide a plurality of targets on each of an array of silicon wafers, thus increasing the total number of identified particles that can be collected. It is thus certain which particles were captured at what specific times
- …
