183,268 research outputs found
No anomalous scaling in electrostatic calibrations for Casimir force measurements
In a recent paper (Phys.Rev.A78, 020101(R) (2008)), Kim at al. have reported
a large anomaly in the scaling law of the electrostatic interaction between a
sphere and a plate, which was observed during the calibration of their Casimir
force set-up. Here we experimentally demonstrate that in proper electrostatic
calibrations the scaling law follows the behavior expected from elementary
electrostatic arguments, even when the electrostatic voltage that one must
apply to minimize the force (typically ascribed to contact potentials) depends
on the separation between the surfaces.Comment: Final versio
Holographic Schwinger effect with a deformed AdS background
In this paper, we consider a deformed AdS background and study effect of
deformation parameter on the pair production rate of the Schwinger effect. The
electrostatic potential is important for the pair production in the holographic
Schwinger effect. In this paper, we analyze the electrostatic potential in a
deformed AdS background and investigate the effect of deformation parameter
which may be useful to test of AdS/QCD. In the case of zero temperature we find
that larger value of the deformation parameter leads to a smaller value of
separation length of the test particles on the probe. Also we find a finite
maximum of separation length in presence of modification parameter.Comment: 21 pages, 17 figures. Title changed, references and figures added in
the new versio
Knife edge skimming for improved separation of molecular species by the deflector
A knife edge for shaping a molecular beam is described to improve the spatial
separation of the species in a molecular beam by the electrostatic deflector.
The spatial separation of different molecular species from each other as well
as from atomic seed gas is improved. The column density of the selected
molecular-beam part in the interaction zone, which corresponds to higher signal
rates, was enhanced by a factor of 1.5, limited by the virtual source size of
the molecular beam.Comment: 3 pages, 2 figure
Enhancement of noncontact friction between closely spaced bodies by two-dimensional systems
. We consider the effect of an external bias voltage and the spatial
variation of the surface potential, on the damping of cantilever vibrations.
The electrostatic friction is due to energy losses in the sample created by the
electromagnetic field from the oscillating charges induced on the surface of
the tip by the bias voltage and spatial variation of the surface potential. A
similar effect arises when the tip is oscillating in the electrostatic field
created by charged defects in a dielectric substrate. The electrostatic
friction is compared with the van der Waals friction originating from the
fluctuating electromagnetic field due to quantum and thermal fluctuation of the
current density inside the bodies. We show that the electrostatic and van der
Waals friction can be greatly enhanced if on the surfaces of the sample and the
tip there are two-dimension (2D) systems, e.g. a 2D-electron system or
incommensurate layers of adsorbed ions exhibiting acoustic vibrations. We show
that the damping of the cantilever vibrations due to the electrostatic friction
may be of similar magnitude as the damping observed in recent experiments of
Stipe \textit{et al} [B.C.Stipe, H.J.Mamin, T.D.Stowe, T.W.Kenny, and D.Rugar,
Phys.Rev. Lett.% \textbf{87}, 0982001]. We also show that at short separation
the van der Waals friction may be large enough to be measured experimentally.Comment: 11 pages, 2 figure
- …
