290,718 research outputs found
Electrostatic interaction of neutral semipermeable membranes
We consider an osmotic equilibrium between bulk solutions of polyelectrolyte
bounded by semipermeable membranes and separated by a thin film of salt-free
liquid. Although the membranes are neutral, the counter-ions of the
polyelectrolyte molecules permeate into the gap and lead to a steric charge
separation. This gives rise to a distance-dependent membrane potential, which
translates into a repulsive electrostatic disjoining pressure. From the
solution of the non-linear Poisson-Boltzmann equation we obtain the
distribution of the potential and of ions. We then derive an explicit formula
for the pressure exerted on the membranes and show that it deviates from the
classical van't Hoff expression for the osmotic pressure. This difference is
interpreted in terms of a repulsive electrostatic disjoining pressure
originating from the overlap of counterion clouds inside the gap. We also
develop a simplified theory based on a linearized Poisson-Boltzmann approach. A
comparison with simulation of a primitive model for the electrolyte is provided
and does confirm the validity of the theoretical predictions Beyond the
fundamental result that the neutral surfaces can repel, this mechanism not only
helps to control the adhesion and long-range interactions of living cells,
bacteria, and vesicles, but also allows us to argue that electrostatic
interactions should play enormous role in determining behavior and functions of
systems bounded by semipermeable membranes
Electrostatic Molecular Interaction from X-ray Diffraction Data. II. Test on Theoretical Pyrazine Data
In a previous paper [Moss & Feil (1981). Acta Cryst. A37, 414-421] a method was reported to calculate the electrostatic potential and the electrostatic interaction energy from single-crystal X-ray diffraction data. The method was applied to experimental pyrazine data; however, owing to the relatively low quality of the data, the results were inconclusive. In the present paper the results are presented of a model study in which the method has been applied to the analysis of ideal error-free diffraction data calculated from a theoretical wavefunction. The molecular quadrupole moments and the electrostatic interaction energies of two pyrazine molecules thus obtained are in very good agreement with the corresponding results derived directly from the wavefunction. Thus the proposed method may be used to determine the long-range electrostatic component of molecular interactions from highly accurate X-ray diffraction data
Counterion-Mediated Weak and Strong Coupling Electrostatic Interaction between Like-Charged Cylindrical Dielectrics
We examine the effective counterion-mediated electrostatic interaction
between two like-charged dielectric cylinders immersed in a continuous
dielectric medium containing neutralizing mobile counterions. We focus on the
effects of image charges induced as a result of the dielectric mismatch between
the cylindrical cores and the surrounding dielectric medium and investigate the
counterion-mediated electrostatic interaction between the cylinders in both
limits of weak and strong electrostatic couplings (corresponding, e.g., to
systems with monovalent and multivalent counterions, respectively). The results
are compared with extensive Monte-Carlo simulations exhibiting good agreement
with the limiting weak and strong coupling results in their respective regime
of validity.Comment: 19 pages, 10 figure
Boundary Condition of Polyelectrolyte Adsorption
The modification of the boundary condition for polyelectrolyte adsorption on
charged surface with short-ranged interaction is investigated under two
regimes. For weakly charged Gaussian polymer in which the short-ranged
attraction dominates, the boundary condition is the same as that of the neutral
polymer adsorption. For highly charged polymer (compressed state) in which the
electrostatic interaction dominates, the linear relationship (electrostatic
boundary condition) between the surface monomer density and the surface charge
density needs to be modified.Comment: 4 page
Electrostatic Steering Accelerates C3d:CR2 Association.
Electrostatic effects are ubiquitous in protein interactions and are found to be pervasive in the complement system as well. The interaction between complement fragment C3d and complement receptor 2 (CR2) has evolved to become a link between innate and adaptive immunity. Electrostatic interactions have been suggested to be the driving factor for the association of the C3d:CR2 complex. In this study, we investigate the effects of ionic strength and mutagenesis on the association of C3d:CR2 through Brownian dynamics simulations. We demonstrate that the formation of the C3d:CR2 complex is ionic strength-dependent, suggesting the presence of long-range electrostatic steering that accelerates the complex formation. Electrostatic steering occurs through the interaction of an acidic surface patch in C3d and the positively charged CR2 and is supported by the effects of mutations within the acidic patch of C3d that slow or diminish association. Our data are in agreement with previous experimental mutagenesis and binding studies and computational studies. Although the C3d acidic patch may be locally destabilizing because of unfavorable Coulombic interactions of like charges, it contributes to the acceleration of association. Therefore, acceleration of function through electrostatic steering takes precedence to stability. The site of interaction between C3d and CR2 has been the target for delivery of CR2-bound nanoparticle, antibody, and small molecule biomarkers, as well as potential therapeutics. A detailed knowledge of the physicochemical basis of C3d:CR2 association may be necessary to accelerate biomarker and drug discovery efforts
Symmetries of Electrostatic Interaction between DNA Molecules
We study a model for pair interaction of DNA molecules generated by the
discrete dipole moments of base-pairs and the charges of phosphate groups, and
find noncommutative group of eighth order of symmetries that leave
invariant. We classify the minima using group and employ
numerical methods for finding them. The minima may correspond to several
cholesteric phases, as well as phases formed by cross-like conformations of
molecules at an angle close to , "snowflake phase". The results
depend on the effective charge of the phosphate group which can be modified
by the polycations or the ions of metals. The snowflake phase could exist for
above the threshold . Below there could be several cholesteric
phases. Close to the snowflake phase could change into the cholesteric
one at constant distance between adjacent molecules.Comment: 13 pages, 4 figure
- …
