566,982 research outputs found
Electron diffraction of tilted perovskites
Simulations of electron diffraction patterns for each of the
known perovskite tilt systems have been performed. The
conditions for the appearance of superlattice reflections
arising from rotations of the octahedra are modified to take
into account the effects of different tilt systems for kinematical
diffraction. The use of selected-area electron diffraction as a
tool for perovskite structure determination is reviewed and
examples are included
Single-Shot Electron Diffraction using a Cold Atom Electron Source
Cold atom electron sources are a promising alternative to traditional
photocathode sources for use in ultrafast electron diffraction due to greatly
reduced electron temperature at creation, and the potential for a corresponding
increase in brightness. Here we demonstrate single-shot, nanosecond electron
diffraction from monocrystalline gold using cold electron bunches generated in
a cold atom electron source. The diffraction patterns have sufficient signal to
allow registration of multiple single-shot images, generating an averaged image
with significantly higher signal-to-noise ratio than obtained with unregistered
averaging. Reflection high-energy electron diffraction (RHEED) was also
demonstrated, showing that cold atom electron sources may be useful in
resolving nanosecond dynamics of nanometre scale near-surface structures.Comment: This is an author-created, un-copyedited version of an article
published in Journal of Physics B: Atomic, Molecular and Optical Physics. IOP
Publishing Ltd is not responsible for any errors or omissions in this version
of the manuscript or any version derived from it. The Version of Record is
available online at http://dx.doi.org/10.1088/0953-4075/48/21/21400
Many-Beam Solution to the Phase Problem in Crystallography
Solving crystal structures from electron diffraction patterns rather than
X-ray diffraction data is hampered by multiple scattering of the fast electrons
within even very thin samples and the difficulty of obtaining diffraction data
at a resolution high enough for applying direct phasing methods. This letter
presents a method by which the effect of multiple scattering is being used for
solving the phase problem, allowing the retrieval of electron structure factors
from diffraction patterns recorded with varying angle of incidence without any
assumption about the scattering potential itself. In particular, the resolution
in the diffraction data does not need to be sufficient to resolve atoms, making
this method particularly interesting for electron crystallography of
2-dimensional protein crystals and other beam-sensitive complex structures.Comment: 4 pages, 3 figure
Concept of a laser-plasma based electron source for sub-10 fs electron diffraction
We propose a new concept of an electron source for ultrafast electron
diffraction with sub-10~fs temporal resolution. Electrons are generated in a
laser-plasma accelerator, able to deliver femtosecond electron bunches at 5 MeV
energy with kHz repetition rate. The possibility of producing this electron
source is demonstrated using Particle-In-Cell simulations. We then use particle
tracking simulations to show that this electron beam can be transported and
manipulated in a realistic beamline, in order to reach parameters suitable for
electron diffraction. The beamline consists of realistic static magnetic optics
and introduces no temporal jitter. We demonstrate numerically that electron
bunches with 5~fs duration and containing 1.5~fC per bunch can be produced,
with a transverse coherence length exceeding 2~nm, as required for electron
diffraction
X-Ray sum frequency generation; direct imaging of ultrafast electron dynamics
X-ray diffraction from molecules in the ground state produces an image of
their charge density, and time-resolved X-ray diffraction can thus monitor the
motion of the nuclei. However, the density change of excited valence electrons
upon optical excitation can barely be monitored with regular diffraction
techniques due to the overwhelming background contribution of the core
electrons. We present a nonlinear X-ray technique made possible by novel free
electron laser sources, which provides a spatial electron density image of
valence electron excitations. The technique, sum frequency generation carried
out with a visible pump and a broadband X-ray diffraction pulse, yields
snapshots of the transition charge densities, which represent the electron
density variations upon optical excitation. The technique is illustrated by ab
initio simulations of transition charge density imaging for the optically
induced electronic dynamics in a donor/acceptor substituted stilbene
Exploring transmission Kikuchi diffraction using a Timepix detector
Electron backscatter diffraction (EBSD) is a well-established scanning electron microscope (SEM)-based technique [1]. It allows the non-destructive mapping of the crystal structure, texture, crystal phase and strain with a spatial resolution of tens of nanometers. Conventionally this is performed by placing an electron sensitive screen, typically consisting of a phosphor screen combined with a charge coupled device (CCD) camera, in front of a specimen, usually tilted 70° to the normal of the exciting electron beam. Recently, a number of authors have shown that a significant increase in spatial resolution is achievable when Kikuchi diffraction patterns are acquired in transmission geometry; that is when diffraction patterns are generated by electrons transmitted through an electron-transparent, usually thinned, specimen. The resolution of this technique, called transmission Kikuchi diffraction (TKD), has been demonstrated to be better than 10 nm [2,3]. We have recently demonstrated the advantages of a direct electron detector, Timepix [4,5], for the acquisition of standard EBSD patterns [5]. In this article we will discuss the advantages of Timepix to perform TKD and for acquiring spot diffraction patterns and more generally for acquiring scanning transmission electron microscopy micrographs in the SEM. Particularly relevant for TKD, is its very compact size, which allows much more flexibility in the positioning of the detector in the SEM chamber. We will furthermore show recent results using Timepix as a virtual forward scatter detector, and will illustrate the information derivable on producing images through processing of data acquired from different areas of the detector. We will show results from samples ranging from gold nanoparticles to nitride semiconductor nanorods
Annealing-induced reduction in nanoscale heterogeneity of thermally evaporated amorphous As2S3 films
The morphology and structural order of thermally deposited and annealed amorphous As2S3 films
have been investigated using high resolution transmission electron microscopy. It was found that
both the as-deposited and annealed films contained sparsely distributed nanocrystallites of the
orpiment As2S3 crystalline phase. However, from selected area electron diffraction both films
appeared amorphous. Fluctuation electron microscopy revealed that the as-deposited film contained
greater nanoscale inhomogeneity. Low temperature annealing reduced the nanoscale inhomogeneity
and resulted in a more homogeneous and energetically favorable network. The reduction in
nanoscale inhomogeneity upon low temperature annealing was accompanied by the appearance of
a first sharp diffraction peak in the diffraction pattern. This first-sharp diffraction peak has been
attributed to chemical ordering of interstitial voids. Our measurements suggest that this chemical
short-range ordering is associated with the dissolution of the energetically unfavorable larger
correlated structures that contribute to the inhomogeneity of the as-deposited film
- …
