42,266 research outputs found
Circuit Electromechanics with a Non-Metallized Nanobeam
We have realized a nano-electromechanical hybrid system consisting of a
silicon nitride beam dielectrically coupled to a superconducting microwave
resonator. We characterize the sample by making use of the Duffing nonlinearity
of the strongly driven beam. In particular, we calibrate the amplitude spectrum
of the mechanical motion and determine the electromechanical vacuum coupling. A
high quality factor of 480,000 at a resonance frequency of 14 MHz is achieved
at 0.5 K. The experimentally determined electromechanical vacuum coupling of
11.5 mHz is quantitatively compared with finite element based model
calculations.Comment: Typos and one reference have been correcte
Effect of a Herringbone Mesostructure on the Electromechanical Properties of Piezofiber Composites for Energy Harvesting Applications
Piezoelectric materials are often used in energy harvesting devices that convert the waste mechanical energy into effective electrical energy. Polymer-based piezoelectric composites appear to be promising candidates for use in these devices, as they offer a number of advantages, such as sufficient flexibility and environmental compatibility. However, a major drawback associated with these composites may be that their effective electromechanical properties are usually weaker than those of the piezoelectric constituents used in them. In this paper, we propose a class of polymeric-based piezoelectric composites with a laminated mesostructure that offer improved electromechanical properties over unidirectional piezofiber composites and can even possess stronger electromechanical properties than their piezoelectric constituents for certain modes of operation. We present examples of enhanced properties of these composites including effective piezoelectric charge and voltage coefficients, as well as effective electromechanical coupling factors for two-dimensional operation modes. We conduct an optimization to identify the optimal microstructure for the highest values of the coupling coefficients within this class of composites. Our findings demonstrate the potential in designing piezoelectric composites with a hierarchical structure to achieve significantly amplified electromechanical properties for energy harvesting applications.Physic
Quantum nondemolition measurement of mechanical motion quanta
The fields of opto- and electromechanics have facilitated numerous advances
in the areas of precision measurement and sensing, ultimately driving the
studies of mechanical systems into the quantum regime. To date, however, the
quantization of the mechanical motion and the associated quantum jumps between
phonon states remains elusive. For optomechanical systems, the coupling to the
environment was shown to preclude the detection of the mechanical mode
occupation, unless strong single photon optomechanical coupling is achieved.
Here, we propose and analyse an electromechanical setup, which allows to
overcome this limitation and resolve the energy levels of a mechanical
oscillator. We find that the heating of the membrane, caused by the interaction
with the environment and unwanted couplings, can be suppressed for carefully
designed electromechanical systems. The results suggest that phonon number
measurement is within reach for modern electromechanical setups.Comment: 8 pages, 5 figures plus 24 pages, 11 figures supplemental materia
An opto-electro-mechanical system based on evanescently-coupled optical microbottle and electromechanical resonator
Evanescent coupling between a silica optical microbottle resonator and a GaAs
electromechanical resonator is demonstrated. This coupling provides high
optical sensitivity and efficient piezoelectric controllability of mechanical
motion. Opto-electro-mechanical feedback control based on optomechanical
detection and electromechanical control is performed in both heating and
cooling regimes at room temperature. This feedback scheme can be extended to
the efficient control of thermal mechanical motion in electromechanical
resonators with arbitrary structures and materials
Euler buckling instability and enhanced current blockade in suspended single-electron transistors
Single-electron transistors embedded in a suspended nanobeam or carbon
nanotube may exhibit effects originating from the coupling of the electronic
degrees of freedom to the mechanical oscillations of the suspended structure.
Here, we investigate theoretically the consequences of a capacitive
electromechanical interaction when the supporting beam is brought close to the
Euler buckling instability by a lateral compressive strain. Our central result
is that the low-bias current blockade, originating from the electromechanical
coupling for the classical resonator, is strongly enhanced near the Euler
instability. We predict that the bias voltage below which transport is blocked
increases by orders of magnitude for typical parameters. This mechanism may
make the otherwise elusive classical current blockade experimentally
observable.Comment: 15 pages, 10 figures, 1 table; published versio
Linear and nonlinear capacitive coupling of electro-opto-mechanical photonic crystal cavities
We fabricate and characterize a microscale silicon electro-opto-mechanical
system whose mechanical motion is coupled capacitively to an electrical circuit
and optically via radiation pressure to a photonic crystal cavity. To achieve
large electromechanical interaction strength, we implement an inverse shadow
mask fabrication scheme which obtains capacitor gaps as small as 30 nm while
maintaining a silicon surface quality necessary for minimizing optical loss.
Using the sensitive optical read-out of the photonic crystal cavity, we
characterize the linear and nonlinear capacitive coupling to the fundamental 63
MHz in-plane flexural motion of the structure, showing that the large
electromechanical coupling in such devices may be suitable for realizing
efficient microwave-to-optical signal conversion.Comment: 8 papers, 4 figure
A Mesoscopic Electromechanical Theory of Ferroelectric Films and Ceramics
We present a multi-scale modelling framework to predict the effective electromechanical behavior of ferroelectric ceramics and thin films. This paper specifically focuses on the mesoscopic scale and models the effects of domains and domain switching taking into account intergranular constraints. Starting from the properties of the single crystal and the pre-poling granular texture, the theory predicts the domain patterns, the post-poling texture, the saturation polarization, saturation strain and the electromechanical moduli. We demonstrate remarkable agreement with experimental data. The theory also explains the superior electromechanical property of PZT at the morphotropic phase boundary. The paper concludes with the application of the theory to predict the optimal texture for enhanced electromechanical coupling factors and high-strain actuation in selected materials
Performance of transducers with segmented piezoelectric stacks using materials with high electromechanical coupling coefficient
Underwater acoustic transducers often include a stack of thickness polarized
piezoelectric material pieces of alternating polarity interspersed with
electrodes, bonded together and electrically connected in parallel. The stack
is normally much shorter than a quarter wavelength at the fundamental resonance
frequency, so that the mechanical behavior of the transducer is not affected by
the segmentation. When the transducer bandwidth is less than a half octave, as
has conventionally been the case, stack segmentation has no significant effect
on the mechanical behavior of the device. However, when a high coupling
coefficient material such as PMN-PT is used to achieve a wider bandwidth, the
difference between a segmented stack and a similar piezoelectric section with
electrodes only at the two ends can be significant. This paper investigates the
effects of stack segmentation on the performance of wideband underwater
acoustic transducers, particularly tonpilz transducer elements. Included is
discussion of transducer designs using single crystal piezoelectric material
with high coupling coefficient compared with more traditional PZT ceramics.Comment: 26 pages including 14 figures, one table and one appendi
Generalized Voigt broadening due to thermal fluctuations of electromechanical nanosensors and molecular electronic junctions
Graphene and other 2D materials give a platform for electromechanical sensing
of biomolecules in aqueous, room temperature environments. The electronic
current changes in response to mechanical deflection, indicating the presence
of forces due to interactions with, e.g., molecular species. We develop
illustrative models of these sensors in order to give explicit, compact
expressions for the current and signal-to-noise ratio. Electromechanical
structures have an electron transmission function that follows a generalized
Voigt profile, with thermal fluctuations giving a Gaussian smearing analogous
to thermal Doppler broadening in solution/gas-phase spectroscopic applications.
The Lorentzian component of the profile comes from the contact to the
electrodes. After providing an accurate approximate form of this profile, we
calculate the mechanical susceptibility for a representative two-level bridge
and the current fluctuations for electromechanical detection. These results
give the underlying mechanics of electromechanical sensing in more complex
scenarios, such as graphene deflectometry
- …
