68,974 research outputs found
Recommended from our members
Investigations with various inner shielding distance tests for a novel coupler-based CPT system applied for electric vehicles using electromagnetic resonant coupling and aluminium shielding material
Contactless power transfer (CPT) technology development has been driven rapidly over the past decade by the world-wide trends towards new energy explorations, and numerous reports have been presented in this area. This paper focuses on passive magnetic shielding, which acts as one of the major factors mainly determining the overall CPT system performance when discussing electromagnetic field flux distribution and its real-time effects on magnetic resonant coupling. As a well performance conductive metallic material, aluminium has been adopted to be a passive shielding material in the designed novel H-shape coupler CPT system in this paper, in order to evaluate and find out the optimal inner shielding distance in between the coil and the inner shielding shell. Three inner shielding distances are applied and analyzed across a critical range of system operating frequency, by which the actual CPT system performance differences from perspectives of electromagnetics and power electronics have been illustrated and compared. As a result, it can be noticed that the 15-mm inner shielding gap CPT model is able to yield an optimal system performance with a maximum system efficiency, peak system output RMS power of over 36% and 22 kW, respectively, which also shows an optimal capability to address major concerns over electric vehicle contactless charging. Besides, along with the electromagnetic field parameters generated in the model, such as actual real-time values of flux linkage, magnetic flux density and field strength, it can be found that the 15-mm inner shielding gap prototype is able to achieve better overall magnetic field performance than 5-mm and 25-mm inner shielding distance CPT models
Anti-shielding Effect and Negative Temperature in Instantaneously Reversed Electric Fields and Left-Handed Media
The connections between the anti-shielding effect, negative absolute
temperature and superluminal light propagation in both the instantaneously
reversed electric field and the left-handed media are considered in the present
paper. The instantaneous inversion of the exterior electric field may cause the
electric dipoles into the state of negative absolute temperature and therefore
give rise to a negative effective mass term of electromagnetic field (i. e.,
the electromagnetic field propagating inside the negative-temperature medium
will acquire an imaginary rest mass), which is said to result in the potential
superluminality effect of light propagation in this anti-shielding dielectric.
In left-handed media, such phenomena may also arise.Comment: 9 pages, Late
Polypyrrole Coated PET Fabrics for Thermal Applications
Polypyrrole can be chemically synthesized on PET fabrics, giving rise to textiles with high electric conductivity. These textiles are suitable for several applications from antistatic films to electromagnetic interference shielding devices. Here we discuss the thermal-electric performance and the heat generation of polypyrrole coated PET fabric samples, previously studied because of their electric conductivity and electromagnetic interference shielding effectiveness. The measured Seebeck effect is comparable with that of metallic thermocouples. Since polypyrrole shows extremely low thermal diffusivities regardless of the electrical conductivity, the low thermal conductivity gives significant advantage to the thermoelectric figure-of-merit ZT, comparable with that of some traditional inorganic thermoelectric materials. The heat generation is also investigated for possible heating textile devices. The results confirm polypyrrole as a prom- ising material for thermal electric applications due to its easy preparation in low cost processin
Intercalated graphite fiber composites as EMI shields in aerospace structures
The requirements for electromagnetic interference (EMI) shielding in aerospace structures are complicated over that of ground structures by their weight limitations. As a result, the best EMI shielding materials must blend low density, high strength, and high elastic modulus with high shielding ability. In addition, fabrication considerations including penetrations and joints play a major role. The EMI shielding properties are calculated for shields formed from pristine and intercalated graphite fiber/epoxy composites and compared to preliminary experimental results and to shields made from aluminum. Calculations indicate that EMI shields could be fabricated from intercalated graphite composites which would have less than 12 percent of the mass of conventional aluminum shields, based on mechanical properties and shielding properties alone
A novel coupler design and analysis with shielding material tests for a CPT system of electric vehicles based on electromagnetic resonant coupling
In this paper, a contactless power transfer (CPT) system using a novel geometrically enhanced energy transfer coupler with three different shielding materials has been built and analysed, along with the evaluations from aspects of electromagnetics and RMS power transmitting based on electromagnetic resonant coupling. A CPT system design improvement with the proposed H-shape ferromagnetic cores and the combined semi-enclosed passive electromagnetic shielding methods have been investigated in terms of generated electromagnetic field characteristics, system power transfer ratings, system efficiency optimization and performances of shielding materials. The results have shown that, across the range of operating frequency of the CPT system, aluminium shielding as a metallic material method could deliver better overall CPT system performance than other two ferromagnetic materials, steel 1010 and ferrite. In addition, the coupler prototype design limitations, misalignment tolerance and the passive shielding design considerations including distance between windings and inner surfaces of shielding shells have been discussed
Self-shielding printed circuit boards for high frequency amplifiers and transmitters
Printed circuit boards retaining as much copper as possible provide electromagnetic shielding between stages of the high frequency amplifiers and transmitters. Oscillation is prevented, spurious output signals are reduced, and multiple stages are kept isolated from each other, both thermally and electrically
- …
