7,706 research outputs found

    On cavitation in Elastodynamics

    Get PDF
    Motivated by the works of Ball (1982) and Pericak-Spector and Spector (1988), we investigate singular solutions of the compressible nonlinear elastodynamics equations. These singular solutions contain discontinuities in the displacement field and can be seen as describing fracture or cavitation. We explore a definition of singular solution via approximating sequences of smooth functions. We use these approximating sequences to investigate the energy of such solutions, taking into account the energy needed to open a crack or hole. In particular, we find that the existence of singular solutions and the finiteness of their energy is strongly related to the behavior of the stress response function for infinite stretching, i.e. the material has to display a sufficient amount of softening. In this note we detail our findings in one space dimension

    Numerical convergence of nonlinear nonlocal continuum models to local elastodynamics

    Full text link
    We quantify the numerical error and modeling error associated with replacing a nonlinear nonlocal bond-based peridynamic model with a local elasticity model or a linearized peridynamics model away from the fracture set. The nonlocal model treated here is characterized by a double well potential and is a smooth version of the peridynamic model introduced in n Silling (J Mech Phys Solids 48(1), 2000). The solutions of nonlinear peridynamics are shown to converge to the solution of linear elastodynamics at a rate linear with respect to the length scale ϵ\epsilon of non local interaction. This rate also holds for the convergence of solutions of the linearized peridynamic model to the solution of the local elastodynamic model. For local linear Lagrange interpolation the consistency error for the numerical approximation is found to depend on the ratio between mesh size hh and ϵ\epsilon. More generally for local Lagrange interpolation of order p1p\geq 1 the consistency error is of order hp/ϵh^p/\epsilon. A new stability theory for the time discretization is provided and an explicit generalization of the CFL condition on the time step and its relation to mesh size hh is given. Numerical simulations are provided illustrating the consistency error associated with the convergence of nonlinear and linearized peridynamics to linear elastodynamics

    Formation of finite-time singularities for nonlinear elastodynamics with small initial disturbances

    Full text link
    This article concerns the formation of finite-time singularities in solutions to quasilinear hyperbolic systems with small initial data. By constructing a special test function, we first present a simpler proof of the main result in Sideris' "Formation of singularities in three-dimensional compressible fluids": the global classical solution is non-existent for compressible Euler equation even for some small initial data. Then we apply this approach to nonlinear elastodynamics and magnetohydrodynamics, showing that the classical solutions to these equations can still blow up in finite time even if the initial data is small enough
    corecore