866,773 research outputs found
ENORM: A Framework For Edge NOde Resource Management
Current computing techniques using the cloud as a centralised server will
become untenable as billions of devices get connected to the Internet. This
raises the need for fog computing, which leverages computing at the edge of the
network on nodes, such as routers, base stations and switches, along with the
cloud. However, to realise fog computing the challenge of managing edge nodes
will need to be addressed. This paper is motivated to address the resource
management challenge. We develop the first framework to manage edge nodes,
namely the Edge NOde Resource Management (ENORM) framework. Mechanisms for
provisioning and auto-scaling edge node resources are proposed. The feasibility
of the framework is demonstrated on a PokeMon Go-like online game use-case. The
benefits of using ENORM are observed by reduced application latency between 20%
- 80% and reduced data transfer and communication frequency between the edge
node and the cloud by up to 95\%. These results highlight the potential of fog
computing for improving the quality of service and experience.Comment: 14 pages; accepted to IEEE Transactions on Services Computing on 12
September 201
Neuro-memristive Circuits for Edge Computing: A review
The volume, veracity, variability, and velocity of data produced from the
ever-increasing network of sensors connected to Internet pose challenges for
power management, scalability, and sustainability of cloud computing
infrastructure. Increasing the data processing capability of edge computing
devices at lower power requirements can reduce several overheads for cloud
computing solutions. This paper provides the review of neuromorphic
CMOS-memristive architectures that can be integrated into edge computing
devices. We discuss why the neuromorphic architectures are useful for edge
devices and show the advantages, drawbacks and open problems in the field of
neuro-memristive circuits for edge computing
A Game-theoretic Framework for Revenue Sharing in Edge-Cloud Computing System
We introduce a game-theoretic framework to ex- plore revenue sharing in an
Edge-Cloud computing system, in which computing service providers at the edge
of the Internet (edge providers) and computing service providers at the cloud
(cloud providers) co-exist and collectively provide computing resources to
clients (e.g., end users or applications) at the edge. Different from
traditional cloud computing, the providers in an Edge-Cloud system are
independent and self-interested. To achieve high system-level efficiency, the
manager of the system adopts a task distribution mechanism to maximize the
total revenue received from clients and also adopts a revenue sharing mechanism
to split the received revenue among computing servers (and hence service
providers). Under those system-level mechanisms, service providers attempt to
game with the system in order to maximize their own utilities, by strategically
allocating their resources (e.g., computing servers).
Our framework models the competition among the providers in an Edge-Cloud
system as a non-cooperative game. Our simulations and experiments on an
emulation system have shown the existence of Nash equilibrium in such a game.
We find that revenue sharing mechanisms have a significant impact on the
system-level efficiency at Nash equilibria, and surprisingly the revenue
sharing mechanism based directly on actual contributions can result in
significantly worse system efficiency than Shapley value sharing mechanism and
Ortmann proportional sharing mechanism. Our framework provides an effective
economics approach to understanding and designing efficient Edge-Cloud
computing systems
Building microclouds at the network edge with the Cloudy platform
Edge computing enables new types of services which operate at the network edge. There are important use cases in pervasive computing, ambient intelligence and the Internet of Things (IoT) for edge computing. In this demo paper we present microclouds deployed at the networks edge in the Guifi.net community network leveraging an open extensible platform called Cloudy. The demonstration focuses on the following aspects: The usage of Cloudy for end users, the services of Cloudy to build microclouds, and the application scenarios of IoT data management within microclouds.Peer ReviewedPostprint (author's final draft
Communication-Aware Computing for Edge Processing
We consider a mobile edge computing problem, in which mobile users offload
their computation tasks to computing nodes (e.g., base stations) at the network
edge. The edge nodes compute the requested functions and communicate the
computed results to the users via wireless links. For this problem, we propose
a Universal Coded Edge Computing (UCEC) scheme for linear functions to
simultaneously minimize the load of computation at the edge nodes, and maximize
the physical-layer communication efficiency towards the mobile users. In the
proposed UCEC scheme, edge nodes create coded inputs of the users, from which
they compute coded output results. Then, the edge nodes utilize the computed
coded results to create communication messages that zero-force all the
interference signals over the air at each user. Specifically, the proposed
scheme is universal since the coded computations performed at the edge nodes
are oblivious of the channel states during the communication process from the
edge nodes to the users.Comment: To Appear in ISIT 201
When Mobile Blockchain Meets Edge Computing
Blockchain, as the backbone technology of the current popular Bitcoin digital
currency, has become a promising decentralized data management framework.
Although blockchain has been widely adopted in many applications, e.g.,
finance, healthcare, and logistics, its application in mobile services is still
limited. This is due to the fact that blockchain users need to solve preset
proof-of-work puzzles to add new data, i.e., a block, to the blockchain.
Solving the proof-of-work, however, consumes substantial resources in terms of
CPU time and energy, which is not suitable for resource-limited mobile devices.
To facilitate blockchain applications in future mobile Internet of Things
systems, multiple access mobile edge computing appears to be an auspicious
solution to solve the proof-of-work puzzles for mobile users. We first
introduce a novel concept of edge computing for mobile blockchain. Then, we
introduce an economic approach for edge computing resource management.
Moreover, a prototype of mobile edge computing enabled blockchain systems is
presented with experimental results to justify the proposed concept.Comment: Accepted by IEEE Communications Magazin
- …
