866,773 research outputs found

    ENORM: A Framework For Edge NOde Resource Management

    Get PDF
    Current computing techniques using the cloud as a centralised server will become untenable as billions of devices get connected to the Internet. This raises the need for fog computing, which leverages computing at the edge of the network on nodes, such as routers, base stations and switches, along with the cloud. However, to realise fog computing the challenge of managing edge nodes will need to be addressed. This paper is motivated to address the resource management challenge. We develop the first framework to manage edge nodes, namely the Edge NOde Resource Management (ENORM) framework. Mechanisms for provisioning and auto-scaling edge node resources are proposed. The feasibility of the framework is demonstrated on a PokeMon Go-like online game use-case. The benefits of using ENORM are observed by reduced application latency between 20% - 80% and reduced data transfer and communication frequency between the edge node and the cloud by up to 95\%. These results highlight the potential of fog computing for improving the quality of service and experience.Comment: 14 pages; accepted to IEEE Transactions on Services Computing on 12 September 201

    Neuro-memristive Circuits for Edge Computing: A review

    Full text link
    The volume, veracity, variability, and velocity of data produced from the ever-increasing network of sensors connected to Internet pose challenges for power management, scalability, and sustainability of cloud computing infrastructure. Increasing the data processing capability of edge computing devices at lower power requirements can reduce several overheads for cloud computing solutions. This paper provides the review of neuromorphic CMOS-memristive architectures that can be integrated into edge computing devices. We discuss why the neuromorphic architectures are useful for edge devices and show the advantages, drawbacks and open problems in the field of neuro-memristive circuits for edge computing

    A Game-theoretic Framework for Revenue Sharing in Edge-Cloud Computing System

    Full text link
    We introduce a game-theoretic framework to ex- plore revenue sharing in an Edge-Cloud computing system, in which computing service providers at the edge of the Internet (edge providers) and computing service providers at the cloud (cloud providers) co-exist and collectively provide computing resources to clients (e.g., end users or applications) at the edge. Different from traditional cloud computing, the providers in an Edge-Cloud system are independent and self-interested. To achieve high system-level efficiency, the manager of the system adopts a task distribution mechanism to maximize the total revenue received from clients and also adopts a revenue sharing mechanism to split the received revenue among computing servers (and hence service providers). Under those system-level mechanisms, service providers attempt to game with the system in order to maximize their own utilities, by strategically allocating their resources (e.g., computing servers). Our framework models the competition among the providers in an Edge-Cloud system as a non-cooperative game. Our simulations and experiments on an emulation system have shown the existence of Nash equilibrium in such a game. We find that revenue sharing mechanisms have a significant impact on the system-level efficiency at Nash equilibria, and surprisingly the revenue sharing mechanism based directly on actual contributions can result in significantly worse system efficiency than Shapley value sharing mechanism and Ortmann proportional sharing mechanism. Our framework provides an effective economics approach to understanding and designing efficient Edge-Cloud computing systems

    Building microclouds at the network edge with the Cloudy platform

    Get PDF
    Edge computing enables new types of services which operate at the network edge. There are important use cases in pervasive computing, ambient intelligence and the Internet of Things (IoT) for edge computing. In this demo paper we present microclouds deployed at the networks edge in the Guifi.net community network leveraging an open extensible platform called Cloudy. The demonstration focuses on the following aspects: The usage of Cloudy for end users, the services of Cloudy to build microclouds, and the application scenarios of IoT data management within microclouds.Peer ReviewedPostprint (author's final draft

    Communication-Aware Computing for Edge Processing

    Full text link
    We consider a mobile edge computing problem, in which mobile users offload their computation tasks to computing nodes (e.g., base stations) at the network edge. The edge nodes compute the requested functions and communicate the computed results to the users via wireless links. For this problem, we propose a Universal Coded Edge Computing (UCEC) scheme for linear functions to simultaneously minimize the load of computation at the edge nodes, and maximize the physical-layer communication efficiency towards the mobile users. In the proposed UCEC scheme, edge nodes create coded inputs of the users, from which they compute coded output results. Then, the edge nodes utilize the computed coded results to create communication messages that zero-force all the interference signals over the air at each user. Specifically, the proposed scheme is universal since the coded computations performed at the edge nodes are oblivious of the channel states during the communication process from the edge nodes to the users.Comment: To Appear in ISIT 201

    When Mobile Blockchain Meets Edge Computing

    Full text link
    Blockchain, as the backbone technology of the current popular Bitcoin digital currency, has become a promising decentralized data management framework. Although blockchain has been widely adopted in many applications, e.g., finance, healthcare, and logistics, its application in mobile services is still limited. This is due to the fact that blockchain users need to solve preset proof-of-work puzzles to add new data, i.e., a block, to the blockchain. Solving the proof-of-work, however, consumes substantial resources in terms of CPU time and energy, which is not suitable for resource-limited mobile devices. To facilitate blockchain applications in future mobile Internet of Things systems, multiple access mobile edge computing appears to be an auspicious solution to solve the proof-of-work puzzles for mobile users. We first introduce a novel concept of edge computing for mobile blockchain. Then, we introduce an economic approach for edge computing resource management. Moreover, a prototype of mobile edge computing enabled blockchain systems is presented with experimental results to justify the proposed concept.Comment: Accepted by IEEE Communications Magazin
    corecore