87,577 research outputs found
Quantifying Eulerian Eddy Leakiness in an Idealized Model
An idealized eddy‐resolving ocean basin, closely resembling the North Pacific Ocean, is simulated using MITgcm. We identify rotationally coherent Lagrangian vortices (RCLVs) and sea surface height (SSH) eddies based on the Lagrangian and Eulerian framework, respectively. General statistical results show that RCLVs have a much smaller coherent core than SSH eddies with the ratio of radius is about 0.5. RCLVs are often enclosed by SSH anomaly contours, but SSH eddy identification method fails to detect more than half of RCLVs. Based on their locations, two types of eddies are classified into three categories: overlapping RCLVs and SSH eddies, nonoverlapping SSH eddies, and nonoverlapping RCLVs. Using Lagrangian particles, we examine the processes of leakage and intrusion around SSH eddies. For overlapping SSH eddies, over the lifetime, the material coherent core only accounts for about 25% and about 50% of initial water leak from eddy interior. The remaining 25% of water can still remain inside the boundary, but only in the form of filaments outside the coherent core. For nonoverlapping SSH eddies, more water leakage (about 60%) occurs at a faster rate. Guided by the number and radius of SSH eddies, fixed circles and moving circles are randomly selected to diagnose the material flux around these circles. We find that the leakage and intrusion trends of moving circles are quite similar to that of nonoverlapping SSH eddies, suggesting that the material coherence properties of nonoverlapping SSH eddies are not significantly different from random pieces of ocean with the same size
LES modelling of nitric oxide (NO) formation in a propane-air turbulent reacting flame
Large Eddy Simulation (LES) technique is applied to investigate the nitric oxide (NO) formation in the propane-air flame inside a cylindrical combustor. In LES a spatial filtering is applied to the governing equations to separate the flow field into large scale eddies and small scale eddies. The large scale eddies which carry most of the turbulent energy are resolved explicitly while the unresolved small scale eddies are modelled. A Smagorinsky model with model constant Cs = 0.1 as well as a dynamic model has been employed for modelling of the sub-grid scale eddies, while the nonpremixed combustion process is modelled through the conserved scalar approach with laminar flamelet model. In NO formation model, the extended Zeldovich (thermal) reaction mechanism is taken into account through a transport equation for NO mass fraction. The computational results are compared with those of the experimental results investigated by Nishida and Mukohara [1] in co-flowing turbulent flame
A visible record of eddies in the southern Mozambique Channel
The flows around Madagascar feed into the Agulhas Current, but there have been few hydrographic studies of the flow within the Mozambique Channel. Some cruise and altimetric data point to this being a region of high mesoscale activity, with eddies migrating through the area. Here we show how ocean colour data throw light on the behaviour of eddies in the southern Mozambique Channel
Eddy genesis and transformation of Stokes flow in a double-lid-driven cavity. Part 2: deep cavities
This paper extends an earlier work [1] on the development of eddies in rectangular cavities driven by two moving lids. The streamfunction describing Stokes flow in such cavities is expressed as a series of Papkovich-Faddle eigenfunctions. The focus here is deep cavities, i.e. those with large height-to-width aspect ratios, where multiple eddies arise. The aspect ratio of the fully developed eddies is found computationally to be 1.38 > 0.05, which is in close agreement with that obtained from Moffatt's [2] analysis of the decay of a disturbance between infinite stationary parallel plates. Extended control space diagrams for both negative and positive lid speed ratios are presented, and show that the pattern of bifurcation curves seen previously in the single-eddy cavity is repeated at higher aspect ratios, but with a shift in the speed ratio. Several special speed ratios are also identified for which the flow in one or more eddies becomes locally symmetric, resulting in locally symmetric bifurcation curves. By superposing two semi-infinite cavities and using the constant velocity damping factor found by Moffatt, a simple model of a finite multiple-eddy cavity is constructed and used to explain both the repetition of bifurcation patterns and the local symmetries. The speed ratios producing partial symmetry in the cavity are shown to be integer powers of Moffatt's velocity damping factor
Lumley's energy cascade dissipation rate model for boundary-free turbulent shear flows
True dissipation occurs mainly at the highest wavenumbers where the eddy sizes are comparatively small. These high wavenumbers receive their energy through the spectral cascade of energy starting with the largest eddies spilling energy into the smaller eddies, passing through each wavenumber until it is dissipated at the microscopic scale. However, a small percentage of the energy does not spill continuously through the cascade but is instantly passed to the higher wavenumbers. Consequently, the smallest eddies receive a certain amount of energy almost immediately. As the spectral energy cascade continues, the highest wavenumber needs a certain time to receive all the energy which has been transferred from the largest eddies. As such, there is a time delay, of the order of tau, between the generation of energy by the largest eddies and the eventual dissipation of this energy. For equilibrium turbulence at high Reynolds numbers, there is a wide range where energy is neither produced by the large eddies nor dissipated by viscosity, but is conserved and passed from wavenumber to higher wavenumbers. The rate at which energy cascades from one wavenumber to another is proportional to the energy contained within that wavenumber. This rate is constant and has been used in the past as a dissipation rate of turbulent kinetic energy. However, this is true only in steady, equilibrium turbulence. Most dissipation models contend that the production of dissipation is proportional to the production of energy and that the destruction of dissipation is proportional to the destruction of energy. In essence, these models state that the change in the dissipation rate is proportional to the change in the kinetic energy. This assumption is obviously incorrect for the case where there is no production of turbulent energy, yet energy continues to cascade from large to small eddies. If the time lag between the onset on the energy cascade to the destruction of energy at the microscale can be modeled, then there will be a better representation of the dissipation process. Development of an energy cascade time scale equation is discussed
Net phytoplankton and zooplankton in the New York Bight, January 1976 to February 1978, with comments on the effects of wind, Gulf Stream eddies, and slope water intrusions
Results are given of monthly net phytoplankton and zooplankton sampling from a 10 m depth in shelf, slope, and Gulf Stream eddy water along a transect running southeastward from Ambrose Light, New York, in 1976, 1977, and early 1978. Plankton abundance and temperature at 10 m and sea surface salinity at each station are listed. The effects of atmospheric forcing and Gulf Stream eddies on plankton distribution and abundance arc discussed. The frequency of Gulf Stream eddy passage through the New York Bight corresponded with the frequency of tropical-subtropical net phytoplankton in the samples. Gulf Stream eddies injected tropical-subtropical zooplankton onto the shelf and removed shelfwater and its entrained zooplankton.
Wind-induced offshore Ekman transport corresponded generally with the unusual timing of two net phytoplankton
maxima. Midsummer net phytoplankton maxima were recorded following the passage of Hurricane Belle (August 1976) and a cold front (July 1977). Tropical-subtropical zooplankton which had been injected onto the outer shelf by Gulf Stream eddies were moved to the inner shelf by a wind-induced current moving up the Hudson Shelf Valley. (PDF file contains 47 pages.
Moist Convection and the Thermal Stratification of the Extratropical Troposphere
Simulations with an aquaplanet general circulation model show that sensible and latent heat transport by large-scale eddies influences the extratropical thermal stratification over a wide range of climates, even in relatively warm climates with small meridional surface temperature gradients. Variations of the lapse rate toward which the parameterized moist convection in the model relaxes atmospheric temperature profiles demonstrate that the convective lapse rate only marginally affects the extratropical thermal stratification in Earth-like and colder climates. In warmer climates, the convective lapse rate does affect the extratropical thermal stratification, but the effect is still smaller than would be expected if moist convection alone controlled the thermal stratification. A theory for how large-scale eddies modify the thermal stratification of dry atmospheres is consistent with the simulation results for colder climates. For warmer and moister climates, however, theories and heuristics that have been proposed to account for the extratropical thermal stratification are not consistent with the simulation results. Theories for the extratropical thermal stratification will generally have to take transport of sensible and latent heat by large-scale eddies into account, but moist convection may only need to be taken into account regionally and in sufficiently warm climates
- …
