1,334,888 research outputs found
Recommended from our members
Final report : verification of bay productivity measurement by remote sensors
From University of Texas at Austin Marine Science Institute to Texas Water Development BoardInteragency cooperative contract TWDB contract no. IA03-483-003July 2004Ecosystem function in estuarine environments is known to be an important indicator of ecosystem health and productivity. There is a need to quantify estuarine ecosystem function variability and link to freshwater inflow to enable better management of ecosystem health and productivity. An important and quantifiable component of ecosystem function is ecosystem metabolism. Results indicate that open water methods were more appropriate than light-dark bottle methods for measuring net ecosystem metabolism in shallow water estuarine ecosystems because of the large contribution of benthos, which is ignored in water bottles. Spatial and temporal variability in net ecosystem metabolism was found. Spatial variability was attributed to differences in benthic habitats and/or station locations with respect to freshwater inflow point sources. Temporal variability in net ecosystem metabolism may be driven by differences in seasonal temperatures and freshwater inflow differences on seasonal time scales. Net ecosystem metabolism was directly related to amounts of freshwater inflow. The strength of this relationship depended on proximity to freshwater sources. Future studies of whole ecosystem metabolism in shallow estuarine ecosystems should employ open water methods and should strive to link other dynamic environmental conditions, such as temperature or irradiance, to ecosystem health, function, and productivity.Marine Scienc
Valuing New Hampshire Salt Marshes: An Approach to Measuring Ecosystem Services
David Burdick presented work a method for estimating the ecosystem services benefits of salt marsh restoration. The approach combines ecological valuation, which uses structural and functional indicators to measure the marshes response to restoration, and economic valuation, which uses ecosystem services valuations, to determine the net gain in ecosystem services of marsh restoration
Freshwater Wetlands Inventory Outreach Activities, West, M
West Environmental, Inc. together with Carex Ecosystem Sciences and Doucet Survey, under contract with the NH Estuaries Project, have identified and mapped potential freshwater wetland mitigation opportunities in nineteen (19) communities that border coastal or estuarine habitats
Natural vs. financial insurance in the management of public-good ecosystems
In the face of uncertainty, ecosystems can provide natural insurance to risk averse users of ecosystem services. We employ a conceptual ecological-economic model to analyze the allocation of (endogenous) risk and ecosystem quality by risk averse ecosystem managers who have access to financial insurances, and study the implications for individually and socially optimal ecosystem management, and policy design. We show that while an improved access to financial insurance leads to lower ecosystem quality, the effect on the free-rider problem and on welfare is determined by ecosystem properties. We derive conditions on ecosystem functioning under which, if financial insurance becomes more accessible, (i) the extent of optimal regulation increases or decreases; and (ii) welfare, in the absence of environmental regulation, increases or decreases.ecosystem quality, ecosystem services, ecosystem management, endogenous environmental risk, insurance, risk-aversion, uncertainty
Digital Ecosystems: Ecosystem-Oriented Architectures
We view Digital Ecosystems to be the digital counterparts of biological
ecosystems. Here, we are concerned with the creation of these Digital
Ecosystems, exploiting the self-organising properties of biological ecosystems
to evolve high-level software applications. Therefore, we created the Digital
Ecosystem, a novel optimisation technique inspired by biological ecosystems,
where the optimisation works at two levels: a first optimisation, migration of
agents which are distributed in a decentralised peer-to-peer network, operating
continuously in time; this process feeds a second optimisation based on
evolutionary computing that operates locally on single peers and is aimed at
finding solutions to satisfy locally relevant constraints. The Digital
Ecosystem was then measured experimentally through simulations, with measures
originating from theoretical ecology, evaluating its likeness to biological
ecosystems. This included its responsiveness to requests for applications from
the user base, as a measure of the ecological succession (ecosystem maturity).
Overall, we have advanced the understanding of Digital Ecosystems, creating
Ecosystem-Oriented Architectures where the word ecosystem is more than just a
metaphor.Comment: 39 pages, 26 figures, journa
Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model
Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures
Assessing, quantifying and valuing the ecosystem services of coastal lagoons
The natural conservation of coastal lagoons is important not only for their ecological importance, but also because of the valuable ecosystem services they provide for human welfare and wellbeing. Coastal lagoons are shallow semi-enclosed systems that support important habitats such as wetlands, mangroves, salt-marshes and seagrass meadows, as well as a rich biodiversity. Coastal lagoons are also complex social-ecological systems with ecosystem services that provide livelihoods, wellbeing and welfare to humans. This study assessed, quantified and valued the ecosystem services of 32 coastal lagoons. The main findings of the study are: (i) the definitions of ecosystem services are still not generally accepted; (ii) the quantification of ecosystem services is made in many different ways, using different units; (iii) the evaluation in monetary terms of some ecosystem service is problematic, often relying on non-monetary evaluation methods; (iv) when ecosystem services are valued in monetary terms, this may represent very different human benefits; and, (v) different aspects of climate change, including increasing temperature, sea-level rise and changes in rainfall patterns threaten the valuable ecosystem services of coastal lagoons.DEVOTES project, from the European Union's Seventh Framework Programme for research, technological development and demonstration [308392]; networks and communities of Eurolag; Future Earth Coasts; SCOR; Fundacao para a Ciencia e a Tecnologia (FCT) Investigador Programme [IF/00331/2013]; Fundacao para a Ciencia e a Tecnologia [UID/MAR/04292/2013]; CESAM by FCT/MEC national funds (PIDDAC) [UID/AMB/50017/2013 - POCI-01-0145-FEDER-007638]; FEDER; European Commission, under the 7th Framework Programme through the collaborative research project LAGOONS [283157]; FCT [SFRH/BPD/107823/2015, SFRH/BPD/91494/2012
The Ecosystem Approach to Fisheries: Issues, Terminology, Principles, Institutional Foundations, Implementation and Outlook
Ecosystems are complex and dynamic natural units that produce goods and services beyond those of benefit to fisheries. Because fisheries have a direct impact on the ecosystem, which is also impacted by other human activities, they need to be managed in an ecosystem context. The meaning of the terms 'ecosystem management', 'ecosystem based management', 'ecosystem approach to fisheries'(EAF), etc., are still not universally defined and progressively evolving. The justification of EAF is evident in the characteristics of an exploited ecosystem and the impacts resulting from fisheries and other activities. The rich set of international agreements of relevance to EAF contains a large number of principles and conceptual objectives. Both provide a fundamental guidance and a significant challenge for the implementation of EAF. The available international instruments also provide the institutional foundations for EAF. The FAO Code of Conduct for Responsible Fisheries is particularly important in this respect and contains provisions for practically all aspects of the approach. One major difficulty in defining EAF lies precisely in turning the available concepts and principles into operational objectives from which an EAF management plan would more easily be developed. The paper discusses these together with the types of action needed to achieve them. Experience in EAF implementation is still limited but some issues are already apparent, e.g. in added complexity, insufficient capacity, slow implementation, need for a pragmatic approach, etc. It is argued, in conclusion, that the future of EAF and fisheries depends on the way in which the two fundamental concepts of fisheries management and ecosystem management, and their respective stakeholders, will join efforts or collide
- …
