39,534 research outputs found

    Evaluating GAIA performances on eclipsing binaries. I. Orbits and stellar parameters for V505 Per, V570 Per and OO Peg

    Get PDF
    The orbits and physical parameters of three detached, double-lined A-F eclipsing binaries have been derived combining H_P, V_T, B_T photometry from the Hipparcos/Tycho mission with 8500-8750 Ang ground-based spectroscopy, mimicking the photometric+spectroscopic observations that should be obtained by GAIA, the approved Cornerstone 6 mission by ESA. This study has two main objectives, namely (a) to derive reasonable orbits for a number of new eclipsing binaries and (b) to evaluate the expected performances by GAIA on eclipsing binaries and the accuracy achievable on the determination of fundamental stellar parameters like masses and radii. It is shown that a 1% precision in the basic stellar parameters can be achieved by GAIA on well observed detached eclipsing binaries provided that the spectroscopic observations are performed at high enough resolution. Other types of eclipsing binaries (including semi-detached and contact types) and different spectral types will be investigated in following papers along this series.Comment: A&A, 11 pages, 5 figures, 5 table

    Analysis of the eclipsing binaries in the LMC discovered by OGLE: Period distribution and frequency of the short-period binaries

    Get PDF
    We review the results of our analysis of the OGLE LMC eclipsing binaries (Mazeh, Tamuz & North 2006), using EBAS -- Eclipsing Binary Automated Solver, an automated algorithm to fit lightcurves of eclipsing binaries (Tamuz, Mazeh & North 2006). After being corrected for observational selection effects, the set of detected eclipsing binaries yielded the period distribution and the frequency of all LMC short-period binaries, and not just the eclipsing systems. Somewhat surprisingly, the period distribution is consistent with a flat distribution in log P between 2 and 10 days. The total number of binaries with periods shorter than 10 days in the LMC was estimated to be about 5000. This figure led us to suggest that (0.7 +- 0.4)% of the main-sequence A- and B-type stars are found in binaries with periods shorter than 10 days. This frequency is substantially smaller than the fraction of binaries found by small Galactic radial-velocity surveys of B stars.Comment: 6 pages, 2 figures, submitted to Conference Proceedings of IAU Symp. 24

    Photometric Solutions for Detached Eclipsing Binaries: selection of ideal distance indicators in the SMC

    Full text link
    Detached eclipsing binary stars provide a robust one-step distance determination to nearby galaxies. As a by-product of Galactic microlensing searches, catalogs of thousands of variable stars including eclipsing binaries have been produced by the OGLE, MACHO and EROS collaborations. We present photometric solutions for detached eclipsing binaries in the Small Magellanic Cloud (SMC) discovered by the OGLE collaboration. The solutions were obtained with an automated version of the Wilson-Devinney program. By fitting mock catalogs of eclipsing binaries we find that the normalized stellar radii (particularly their sum) and the surface brightness ratio are accurately described by the fitted parameters and estimated standard errors, despite various systematic uncertainties. In many cases these parameters are well constrained. In addition we find that systems exhibiting complete eclipses can be reliably identified where the fractional standard errors in the radii are small. We present two quantitatively selected sub-samples of eclipsing binaries that will be excellent distance indicators. These can be used both for computation of the distance to the SMC and to probe its structure. One particularly interesting binary has a very well determined solution, exhibits complete eclipses, and is comprised of well detached G-type, class IIII giants.Comment: 29 pages, 12 figures. To be published in Ap

    A transiting companion to the eclipsing binary KIC002856960

    Full text link
    We present an early result from an automated search of Kepler eclipsing binary systems for circumbinary companions. An intriguing tertiary signal has been discovered in the short period eclipsing binary KIC002856960. This third body leads to transit-like features in the light curve occurring every 204.2 days, while the two other components of the system display eclipses on a 6.2 hour period. The variations due to the tertiary body last for a duration of \sim1.26 days, or 4.9 binary orbital periods. During each crossing of the binary orbit with the tertiary body, multiple individual transits are observed as the close binary stars repeatedly move in and out of alignment with the tertiary object. We are at this stage unable to distinguish between a planetary companion to a close eclipsing binary, or a hierarchical triply eclipsing system of three stars. Both possibilities are explored, and the light curves presented.Comment: Accepted into A&A Letters (5 pages & 3 figures

    On The Period Determination of ASAS Eclipsing Binaries

    Full text link
    Variable stars, or particularly eclipsing binaries, are very essential astronomical occurrence. Surveys are the backbone of astronomy, and many discoveries of variable stars are the results of surveys. All-Sky Automated Survey (ASAS) is one of the observing projects whose ultimate goal is photometric monitoring of variable stars. Since its first light in 1997, ASAS has collected 50,099 variable stars, with 11,076 eclipsing binaries among them. In the present work we focus on the period determination of the eclipsing binaries. Since the number of data points in each ASAS eclipsing binary light curve is sparse, period determination of any system is a not straightforward process. For 30 samples of such systems we compare the implementation of Lomb-Scargle algorithm which is an Fast Fourier Transform (FFT) basis and Phase Dispersion Minimization (PDM) method which is non-FFT basis to determine their period. It is demonstrated that PDM gives better performance at handling eclipsing detached (ED) systems whose variability are non-sinusoidal. More over, using semi-automatic recipes, we get better period solution and satisfactorily improve 53% of the selected object's light curves, but failed against another 7% of selected objects. In addition, we also highlight 4 interesting objects for further investigation.Comment: Presented in International Conferences on Mathematics and Natural Science
    corecore