674 research outputs found

    The zebrafish xenograft platform-A novel tool for modeling KSHV-associated diseases

    Get PDF
    Kaposi\u27s sarcoma associated-herpesvirus (KSHV, also known as human herpesvirus-8) is a gammaherpesvirus that establishes life-long infection in human B lymphocytes. KSHV infection is typically asymptomatic, but immunosuppression can predispose KSHV-infected individuals to primary effusion lymphoma (PEL); a malignancy driven by aberrant proliferation of latently infected B lymphocytes, and supported by pro-inflammatory cytokines and angiogenic factors produced by cells that succumb to lytic viral replication. Here, we report the development of the firs

    The Role of Cytoplasmic mRNA Cap-Binding Protein Complexes in Trypanosoma brucei and Other Trypanosomatids.

    Get PDF
    Trypanosomatid protozoa are unusual eukaryotes that are well known for having unusual ways of controlling their gene expression. The lack of a refined mode of transcriptional control in these organisms is compensated by several post-transcriptional control mechanisms, such as control of mRNA turnover and selection of mRNA for translation, that may modulate protein synthesis in response to several environmental conditions found in different hosts. In other eukaryotes, selection of mRNA for translation is mediated by the complex eIF4F, a heterotrimeric protein complex composed by the subunits eIF4E, eIF4G, and eIF4A, where the eIF4E binds to the 5'-cap structure of mature mRNAs. In this review, we present and discuss the characteristics of six trypanosomatid eIF4E homologs and their associated proteins that form multiple eIF4F complexes. The existence of multiple eIF4F complexes in trypanosomatids evokes exquisite mechanisms for differential mRNA recognition for translation

    Parkin-independent mitophagy controls chemotherapeutic response in cancer cells

    Get PDF
    Mitophagy is an evolutionarily conserved process that selectively targets impaired mitochondria for degradation. Defects in mitophagy are often associated with diverse pathologies, including cancer. Because the main known regulators of mitophagy are frequently inactivated in cancer cells, the mechanisms that regulate mitophagy in cancer cells are not fully understood. Here, we identified an E3 ubiquitin ligase (ARIH1/HHARI) that triggers mitophagy in cancer cells in a PINK1-dependent manner. We found that ARIH1/HHARI polyubiquitinates damaged mitochondria, leading to their removal via autophagy. Importantly, ARIH1 is widely expressed in cancer cells, notably in breast and lung adenocarcinomas; ARIH1 expression protects against chemotherapy-induced death. These data challenge the view that the main regulators of mitophagy are tumor suppressors, arguing instead that ARIH1-mediated mitophagy promotes therapeutic resistance

    4EGI-1 targets breast cancer stem cells by selective inhibition of translation that persists in CSC maintenance, proliferation and metastasis

    Get PDF
    Cancer death is a leading cause of global mortality. An estimated 14.1 million new cancer cases and 8.2 million cancer deaths occurred worldwide in 2012 alone. Cancer stem cells (CSCs) within tumors are essential for tumor metastasis and reoccurrence, the key factors of cancer lethality. Here we report that 4EGI-1, an inhibitor of the interaction between translation initiation factors eIF4E1 and eIF4G1 effectively inhibits breast CSCs through selectively reducing translation persistent in breast CSCs. Translation initiation factor eIF4E1 is significantly enhanced in breast CSCs in comparison to non-CSC breast cancer cells. 4EGI-1 presents increased cytotoxicity to breast CSCs compared to non-CSC breast cancer cells. 4EGI-1 promotes breast CSC differentiation and represses breast CSC induced tube-like structure formation of human umbilical vein endothelial cells (HUVECs). 4EGI-1 isomers suppress breast CSC tumorangiogenesis and tumor growth in vivo. In addition, 4EGI-1 decreases proliferation in and induces apoptosis into breast CSC tumor cells. Furthermore, 4EGI-1 selectively inhibits translation of mRNAs encoding NANOG, OCT4, CXCR4, c-MYC and VEGF in breast CSC tumors. Our study demonstrated that 4EGI-1 targets breast CSCs through selective inhibition of translation critical for breast CSCs, suggesting that selective translation initiation interference might be an avenue targeting CSCs within tumors

    mRNA cap regulation in mammalian cell function and fate

    Get PDF
    In this review we explore the regulation of mRNA cap formation and its impact on mammalian cells. The mRNA cap is a highly methylated modification of the 5’ end of RNA pol II-transcribed RNA. It protects RNA from degradation, recruits complexes involved in RNA processing, export and translation initiation, and marks cellular mRNA as “self” to avoid recognition by the innate immune system. The mRNA cap can be viewed as a unique mark which selects RNA pol II transcripts for specific processing and translation. Over recent years, examples of regulation of mRNA cap formation have emerged, induced by oncogenes, developmental pathways and during the cell cycle. These signalling pathways regulate the rate and extent of mRNA cap formation, resulting in changes in gene expression, cell physiology and cell function

    The human RBPome: From genes and proteins to human disease

    Get PDF
    RNA binding proteins (RBPs) play a central role in mediating post transcriptional regulation of genes. However less is understood about them and their regulatory mechanisms. In this study, we construct a catalogue of 1344 experimentally confirmed RBPs. The domain architecture of RBPs enabled us to classify them into three groups — Classical (29%), Non-classical (19%) and unclassified (52%). A higher percentage of proteins with unclassified domains reveals the presence of various uncharacterised motifs that can potentially bind RNA. RBPs were found to be highly disordered compared to Non-RBPs (p < 2.2e-16, Fisher's exact test), suggestive of a dynamic regulatory role of RBPs in cellular signalling and homeostasis. Evolutionary analysis in 62 different species showed that RBPs are highly conserved compared to Non-RBPs (p < 2.2e-16, Wilcox-test), reflecting the conservation of various biological processes like mRNA splicing and ribosome biogenesis. The expression patterns of RBPs from human proteome map revealed that ~ 40% of them are ubiquitously expressed and ~ 60% are tissue-specific. RBPs were also seen to be highly associated with several neurological disorders, cancer and inflammatory diseases. Anatomical contexts like B cells, T-cells, foetal liver and foetal brain were found to be strongly enriched for RBPs, implying a prominent role of RBPs in immune responses and different developmental stages. The catalogue and meta-analysis presented here should form a foundation for furthering our understanding of RBPs and the cellular networks they control, in years to come. This article is part of a Special Issue entitled: Proteomics in India

    RNAseq analysis of fast skeletal muscle in restriction-fed transgenic coho salmon (Oncorhynchus kisutch) : an experimental model uncoupling the growth hormone and nutritional signals regulating growth

    Get PDF
    Background Coho salmon (Oncorhynchus kisutch) transgenic for growth hormone (Gh) express Gh in multiple tissues which results in increased appetite and continuous high growth with satiation feeding. Restricting Gh-transgenics to the same lower ration (TR) as wild-type fish (WT) results in similar growth, but with the recruitment of fewer, larger diameter, muscle skeletal fibres to reach a given body size. In order to better understand the genetic mechanisms behind these different patterns of muscle growth and to investigate how the decoupling of Gh and nutritional signals affects gene regulation we used RNA-seq to compare the fast skeletal muscle transcriptome in TR and WT coho salmon. Results Illumina sequencing of individually barcoded libraries from 6 WT and 6 TR coho salmon yielded 704,550,985 paired end reads which were used to construct 323,115 contigs containing 19,093 unique genes of which >10,000 contained >90 % of the coding sequence. Transcripts coding for 31 genes required for myoblast fusion were identified with 22 significantly downregulated in TR relative to WT fish, including 10 (vaspa, cdh15, graf1, crk, crkl, dock1, trio, plekho1a, cdc42a and dock5) associated with signaling through the cell surface protein cadherin. Nineteen out of 44 (43 %) translation initiation factors and 14 of 47 (30 %) protein chaperones were upregulated in TR relative to WT fish. Conclusions TR coho salmon showed increased growth hormone transcripts and gene expression associated with protein synthesis and folding than WT fish even though net rates of protein accretion were similar. The uncoupling of Gh and amino acid signals likely results in additional costs of transcription associated with protein turnover in TR fish. The predicted reduction in the ionic costs of homeostasis in TR fish associated with increased fibre size were shown to involve multiple pathways regulating myotube fusion, particularly cadherin signaling.Publisher PDFPeer reviewe

    The DDX6-4E-T interaction mediates translational repression and P-body assembly

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.4E-Transporter binds eIF4E via its consensus sequence YXXXXLΦ, shared with eIF4G, and is a nucleocytoplasmic shuttling protein found enriched in P-(rocessing) bodies. 4E-T inhibits general protein synthesis by reducing available eIF4E levels. Recently, we showed that 4E-T bound to mRNA however represses its translation in an eIF4E-independent manner, and contributes to silencing of mRNAs targeted by miRNAs. Here, we address further the mechanism of translational repression by 4E-T by first identifying and delineating the interacting sites of its major partners by mass spectrometry and western blotting, including DDX6, UNR, unrip, PAT1B, LSM14A and CNOT4. Furthermore, we document novel binding between 4E-T partners including UNR-CNOT4 and unrip-LSM14A, altogether suggesting 4E-T nucleates a complex network of RNA-binding protein interactions. In functional assays, we demonstrate that joint deletion of two short conserved motifs that bind UNR and DDX6 relieves repression of 4E-T-bound mRNA, in part reliant on the 4E-T-DDX6-CNOT1 axis. We also show that the DDX6-4E-T interaction mediates miRNA-dependent translational repression and de novo P-body assembly, implying that translational repression and formation of new P-bodies are coupled processes. Altogether these findings considerably extend our understanding of the role of 4E-T in gene regulation, important in development and neurogenesis.BBSRC [BB/J00779X/1 to N.S.]; CNRS PICS (to D.W.); Agence Nationale pour la Recherche [ANR-14-CE09-0013-01ANR to D.W.]; Gates Cambridge Foundation (to A.K.); Fondation Wiener – Anspach of the Université Libre de Bruxelles and the Cambridge Newton Trust (C.V.). Funding for open access charge: BBSRC

    Typing tumors using pathways selected by somatic evolution.

    Get PDF
    Many recent efforts to analyze cancer genomes involve aggregation of mutations within reference maps of molecular pathways and protein networks. Here, we find these pathway studies are impeded by molecular interactions that are functionally irrelevant to cancer or the patient's tumor type, as these interactions diminish the contrast of driver pathways relative to individual frequently mutated genes. This problem can be addressed by creating stringent tumor-specific networks of biophysical protein interactions, identified by signatures of epistatic selection during tumor evolution. Using such an evolutionarily selected pathway (ESP) map, we analyze the major cancer genome atlases to derive a hierarchical classification of tumor subtypes linked to characteristic mutated pathways. These pathways are clinically prognostic and predictive, including the TP53-AXIN-ARHGEF17 combination in liver and CYLC2-STK11-STK11IP in lung cancer, which we validate in independent cohorts. This ESP framework substantially improves the definition of cancer pathways and subtypes from tumor genome data
    corecore