815,724 research outputs found

    Approximate Dynamic Programming via Sum of Squares Programming

    Full text link
    We describe an approximate dynamic programming method for stochastic control problems on infinite state and input spaces. The optimal value function is approximated by a linear combination of basis functions with coefficients as decision variables. By relaxing the Bellman equation to an inequality, one obtains a linear program in the basis coefficients with an infinite set of constraints. We show that a recently introduced method, which obtains convex quadratic value function approximations, can be extended to higher order polynomial approximations via sum of squares programming techniques. An approximate value function can then be computed offline by solving a semidefinite program, without having to sample the infinite constraint. The policy is evaluated online by solving a polynomial optimization problem, which also turns out to be convex in some cases. We experimentally validate the method on an autonomous helicopter testbed using a 10-dimensional helicopter model.Comment: 7 pages, 5 figures. Submitted to the 2013 European Control Conference, Zurich, Switzerlan

    Time Blocks Decomposition of Multistage Stochastic Optimization Problems

    Full text link
    Multistage stochastic optimization problems are, by essence, complex because their solutions are indexed both by stages (time) and by uncertainties (scenarios). Their large scale nature makes decomposition methods appealing.The most common approaches are time decomposition --- and state-based resolution methods, like stochastic dynamic programming, in stochastic optimal control --- and scenario decomposition --- like progressive hedging in stochastic programming. We present a method to decompose multistage stochastic optimization problems by time blocks, which covers both stochastic programming and stochastic dynamic programming. Once established a dynamic programming equation with value functions defined on the history space (a history is a sequence of uncertainties and controls), we provide conditions to reduce the history using a compressed "state" variable. This reduction is done by time blocks, that is, at stages that are not necessarily all the original unit stages, and we prove areduced dynamic programming equation. Then, we apply the reduction method by time blocks to \emph{two time-scales} stochastic optimization problems and to a novel class of so-called \emph{decision-hazard-decision} problems, arising in many practical situations, like in stock management. The \emph{time blocks decomposition} scheme is as follows: we use dynamic programming at slow time scale where the slow time scale noises are supposed to be stagewise independent, and we produce slow time scale Bellman functions; then, we use stochastic programming at short time scale, within two consecutive slow time steps, with the final short time scale cost given by the slow time scale Bellman functions, and without assuming stagewise independence for the short time scale noises
    corecore