308,704 research outputs found

    Modulated 3D cross-correlation light scattering: improving turbid sample characterization

    Get PDF
    Accurate characterization using static light scattering (SLS) and dynamic light scattering (DLS) methods mandates the measurement and analysis of singly-scattered light. In turbid samples, the suppression of multiple scattering is therefore required to obtain meaningful results. One powerful technique for achieving this, known as 3D cross-correlation, uses two simultaneous light scattering experiments performed at the same scattering vector on the same sample volume in order to extract only the single scattering information common to both. Here we present a significant improvement to this method in which the two scattering experiments are temporally separated by modulating the incident laser beams and gating the detector outputs at frequencies exceeding the timescale of the system dynamics. This robust modulation scheme eliminates cross-talk between the two beam- detector pairs and leads to a four-fold improvement in the cross-correlation intercept. We measure the dynamic and angular-dependent scattering intensity of turbid colloidal suspensions and exploit the improved signal quality of the modulated 3D cross-correlation DLS and SLS techniques.Comment: Review of Scientific Instruments, accepted for publicatio

    Path-Length-Resolved Dynamic Light Scattering: Modeling the Transition From Single to Diffusive Scattering

    Get PDF
    Dynamic light-scattering spectroscopy is used to study Brownian motion within highly scattering samples. The fluctuations of the light field that is backscattered by a suspension of polystyrene microspheres are measured as power spectra by use of low-coherence interferometry to obtain path-length resolution. The data are modeled as the sum of contributions to the detected light weighted by a Poisson probability for the number of events that each component has experienced. By analyzing the broadening of the power spectra as a function of the path length for various sizes of particles, we determine the contribution of multiple scattering to the detected signal as a function of scattering anisotropy

    Dynamic heterodyne near field scattering

    Get PDF
    The technique heterodyne near field scattering (HNFS), originally developed for low-angle static light scattering, has also been implemented for carrying out dynamic light scattering. While the classical dynamic light scattering method measures the intensity-intensity correlation function, dynamic HNFS gives directly the field-field correlation function, without any assumption on the statistical properties of the sample, as the ones required by the Siegert relation. The technique has been tested with calibrated Brownian particles and its performances compared to those of the classical dynamic light scattering method.The technique heterodyne near field scattering (HNFS), originally developed for low-angle static light scattering, has also been implemented for carrying out dynamic light scattering. While the classical dynamic light scattering method measures the intensity-intensity correlation function, dynamic HNFS gives directly the field-field correlation function, without any assumption on the statistical properties of the sample, as the ones required by the Siegert relation. The technique has been tested with calibrated Brownian particles and its performances compared to those of the classical dynamic light scattering method. \ua9 2008 American Institute of Physics

    Multiangle static and dynamic light scattering in the intermediate scattering angle range

    Full text link
    We describe a light scattering apparatus based on a novel optical scheme covering the scattering angle range 0.5\dg \le \theta \le 25\dg, an intermediate regime at the frontier between wide angle and small angle setups that is difficult to access by existing instruments. Our apparatus uses standard, readily available optomechanical components. Thanks to the use of a charge-coupled device detector, both static and dynamic light scattering can be performed simultaneously at several scattering angles. We demonstrate the capabilities of our apparatus by measuring the scattering profile of a variety of samples and the Brownian dynamics of a dilute colloidal suspension

    Enhancement in Electro-Optic Properties of Dynamic Scattering Systems through Addition of Dichroic Dyes

    Full text link
    Electro-optic properties of dynamic scattering in homeotropically aligned pure and dichroic dye-doped nematic liquid crystal samples are examined. The optical properties of the two systems are quantified using transmission properties of scattered and unscattered as a function of amplitude and frequency of an applied voltage. Auto-correlation of the scattered signal at different applied voltages is used to compare the decay times in the two systems. Lastly, the histogram of the scattered signal reveals a wavevector dependent large light scattering event. The dye-doped system shows a significant enhancement of light blocking property in both normal and off-axis light propagation. The characteristics of the system are compared to other scattering technologies. The results suggest that dye-doped system can overcome shortcomings in scattering based devices used for near-eye applications

    Characterization of anisotropic nano-particles by using depolarized dynamic light scattering in the near field

    Full text link
    Light scattering techniques are widely used in many fields of condensed and sof t matter physics. Usually these methods are based on the study of the scattered light in the far field. Recently, a new family of near field detection schemes has been developed, mainly for the study of small angle light scattering. These techniques are based on the detection of the light intensity near to the sample, where light scattered at different directions overlaps but can be distinguished by Fourier transform analysis. Here we report for the first time data obtained with a dynamic near field scattering instrument, measuring both polarized and depolarized scattered light. Advantages of this procedure over the traditional far field detection include the immunity to stray light problems and the possibility to obtain a large number of statistical samples for many different wave vectors in a single instantaneous measurement. By using the proposed technique we have measured the translational and rotational diffusion coefficients of rod-like colloidal particles. The obtained data are in very good agreement with the data acquired with a traditional light scattering apparatus.Comment: Published in Optics Express. This version has changes in bibliograph

    Inelastic electron and light scattering from the elementary electronic excitations in quantum wells: Zero magnetic field

    Full text link
    The most fundamental approach to an understanding of electronic, optical, and transport phenomena which the condensed matter physics (of conventional as well as nonconventional systems) offers is generally founded on two experiments: the inelastic electron scattering and the inelastic light scattering. This work embarks on providing a systematic framework for the theory of inelastic electron scattering and of inelastic light scattering from the electronic excitations in GaAs/Ga1x_{1-x}Alx_{x}As quantum wells. To this end, we start with the Kubo's correlation function to derive the generalized nonlocal, dynamic dielectric function, and the inverse dielectric function within the framework of Bohm-Pines' random-phase approximation. This is followed by a thorough development of the theory of inelastic electron scattering and of inelastic light scattering. The methodological part is then subjected to the analytical diagnoses which allow us to sense the subtlety of the analytical results and the importance of their applications. The general analytical results, which know no bounds regarding, e.g., the subband occupancy, are then specified so as to make them applicable to practicality. After trying and testing the eigenfunctions, we compute the density of states, the Fermi energy, the full excitation spectrum made up of intrasubband and intersubband -- single-particle and collective (plasmon) -- excitations, the loss functions for all the principal geometries envisioned for the inelastic electron scattering, and the Raman intensity, which provides a measure of the real transitions induced by the (laser) probe, for the inelastic light scattering..
    corecore