757,017 research outputs found
DyVOSE project: experiences in applying privilege management infrastructures
Privilege Management Infrastructures (PMI) are emerging as a necessary alternative to authorization through Access Control Lists (ACL) as the need for finer grained security on the Grid increases in numerous domains. The 2-year JISC funded DyVOSE Project has investigated applying PMIs within an e-Science education context. This has involved establishing a Grid Computing module as part of Glasgow University’s Advanced MSc degree in Computing Science. A laboratory infrastructure was built for the students realising a PMI with the PERMIS software, to protect Grid Services they created. The first year of the course centered on building a static PMI at Glasgow. The second year extended this to allow dynamic attribute delegation between Glasgow and Edinburgh to support dynamic establishment of fine grained authorization based virtual organizations across multiple institutions. This dynamic delegation was implemented using the DIS (Delegation Issuing) Web Service supplied by the University of Kent. This paper describes the experiences and lessons learned from setting up and applying the advanced Grid authorization infrastructure within the Grid Computing course, focusing primarily on the second year and the dynamic virtual organisation setup between Glasgow and Edinburgh
A 100-element planar Schottky diode grid mixer
The authors present a Schottky diode grid mixer suitable for mixing or detecting quasi-optical signals. The mixer is a planar bow-tie grid structure periodically loaded with diodes. A simple transmission line model is used to predict the reflection coefficient of the grid to a normally incident plane wave. The grid mixer power handling and dynamic range scales as the number of devices in the grid. A 10-GHz 100-element grid mixer has shown an improvement in dynamic range of 16.3 to 19.8 dB over an equivalent single-diode mixer. The conversion loss and noise figure of the grid are equal to those of a conventional mixer. The quasi-optical coupling of the input signals makes the grid mixer suitable for millimeter-wave and submillimeter-wave applications by eliminating waveguide sidewall losses and machining difficulties. The planar property of the grid potentially allows thousands of devices to be integrated monolithically
A Note on a Rapid Grid Search Method for Solving Dynamic Programming Problems in Economics
We introduce a rapid grid search method in solving the dynamic programming problems in economics. Compared to mainstream grid search methods, by using local information of the Bellman equation, this method can significantly increase the efficiency in solving dynamic programming problems by reducing the grid points searched in the control space.Dynamic Programming, Grid Search, Control Space
Proxy dynamic delegation in grid gateway
Nowadays one of the main obstacles the research comes up against is the
difficulty in accessing the required computational resources. Grid is able to
offer the user a wide set of resources, even if they are often too hard to
exploit for non expert end user. Use simplification has today become a common
practice in the access and utilization of Cloud, Grid, and data center
resources. With the launch of L-GRID gateway, we introduced a new way to deal
with Grid portals. L-GRID is an extremely light portal developed in order to
access the EGI Grid infrastructure via Web, allowing users to submit their jobs
from whatever Web browser in a few minutes, without any knowledge about the
underlying Grid infrastructure.Comment: 6 page
Bipartite electronic SLA as a business framework to support cross-organization load management of real-time online applications
Online applications such as games and e-learning applications fall within the broader category of real-time online interactive applications (ROIA), a new class of ‘killer’ application for the Grid that is being investigated in the edutain@grid project. The two case studies in edutain@grid are an online game and an e-learning training application. We present a novel Grid-based business framework that makes use of bipartite service level agreements (SLAs) and dynamic invoice models to model complex business relationships in a massively scalable and flexible way. We support cross-organization load management at the business level, through zone migration. For evaluation we look at existing and extended value chains, the quality of service (QoS) metrics measured and the dynamic invoice models that support this work. We examine the causal links from customer quality of experience (QoE) and service provider quality of business (QoBiz) through to measured quality of service. Finally we discuss a shared reward business ecosystem and suggest how extended service level agreements and invoice models can support this
Cluster-Based Load Balancing Algorithms for Grids
E-science applications may require huge amounts of data and high processing
power where grid infrastructures are very suitable for meeting these
requirements. The load distribution in a grid may vary leading to the
bottlenecks and overloaded sites. We describe a hierarchical dynamic load
balancing protocol for Grids. The Grid consists of clusters and each cluster is
represented by a coordinator. Each coordinator first attempts to balance the
load in its cluster and if this fails, communicates with the other coordinators
to perform transfer or reception of load. This process is repeated
periodically. We analyze the correctness, performance and scalability of the
proposed protocol and show from the simulation results that our algorithm
balances the load by decreasing the number of high loaded nodes in a grid
environment.Comment: 17 pages, 11 figures; International Journal of Computer Networks,
volume3, number 5, 201
- …
