437,988 research outputs found

    Near Optimal Parallel Algorithms for Dynamic DFS in Undirected Graphs

    Full text link
    Depth first search (DFS) tree is a fundamental data structure for solving graph problems. The classical algorithm [SiComp74] for building a DFS tree requires O(m+n)O(m+n) time for a given graph GG having nn vertices and mm edges. Recently, Baswana et al. [SODA16] presented a simple algorithm for updating DFS tree of an undirected graph after an edge/vertex update in O~(n)\tilde{O}(n) time. However, their algorithm is strictly sequential. We present an algorithm achieving similar bounds, that can be adopted easily to the parallel environment. In the parallel model, a DFS tree can be computed from scratch using mm processors in expected O~(1)\tilde{O}(1) time [SiComp90] on an EREW PRAM, whereas the best deterministic algorithm takes O~(n)\tilde{O}(\sqrt{n}) time [SiComp90,JAlg93] on a CRCW PRAM. Our algorithm can be used to develop optimal (upto polylog n factors deterministic algorithms for maintaining fully dynamic DFS and fault tolerant DFS, of an undirected graph. 1- Parallel Fully Dynamic DFS: Given an arbitrary online sequence of vertex/edge updates, we can maintain a DFS tree of an undirected graph in O~(1)\tilde{O}(1) time per update using mm processors on an EREW PRAM. 2- Parallel Fault tolerant DFS: An undirected graph can be preprocessed to build a data structure of size O(m) such that for a set of kk updates (where kk is constant) in the graph, the updated DFS tree can be computed in O~(1)\tilde{O}(1) time using nn processors on an EREW PRAM. Moreover, our fully dynamic DFS algorithm provides, in a seamless manner, nearly optimal (upto polylog n factors) algorithms for maintaining a DFS tree in semi-streaming model and a restricted distributed model. These are the first parallel, semi-streaming and distributed algorithms for maintaining a DFS tree in the dynamic setting.Comment: Accepted to appear in SPAA'17, 32 Pages, 5 Figure

    Lifted Worm Algorithm for the Ising Model

    Full text link
    We design an irreversible worm algorithm for the zero-field ferromagnetic Ising model by using the lifting technique. We study the dynamic critical behavior of an energy estimator on both the complete graph and toroidal grids, and compare our findings with reversible algorithms such as the Prokof'ev-Svistunov worm algorithm. Our results show that the lifted worm algorithm improves the dynamic exponent of the energy estimator on the complete graph, and leads to a significant constant improvement on toroidal grids.Comment: 9 pages, 6 figure

    Fast Dynamic Graph Algorithms for Parameterized Problems

    Full text link
    Fully dynamic graph is a data structure that (1) supports edge insertions and deletions and (2) answers problem specific queries. The time complexity of (1) and (2) are referred to as the update time and the query time respectively. There are many researches on dynamic graphs whose update time and query time are o(G)o(|G|), that is, sublinear in the graph size. However, almost all such researches are for problems in P. In this paper, we investigate dynamic graphs for NP-hard problems exploiting the notion of fixed parameter tractability (FPT). We give dynamic graphs for Vertex Cover and Cluster Vertex Deletion parameterized by the solution size kk. These dynamic graphs achieve almost the best possible update time O(poly(k)logn)O(\mathrm{poly}(k)\log n) and the query time O(f(poly(k),k))O(f(\mathrm{poly}(k),k)), where f(n,k)f(n,k) is the time complexity of any static graph algorithm for the problems. We obtain these results by dynamically maintaining an approximate solution which can be used to construct a small problem kernel. Exploiting the dynamic graph for Cluster Vertex Deletion, as a corollary, we obtain a quasilinear-time (polynomial) kernelization algorithm for Cluster Vertex Deletion. Until now, only quadratic time kernelization algorithms are known for this problem. We also give a dynamic graph for Chromatic Number parameterized by the solution size of Cluster Vertex Deletion, and a dynamic graph for bounded-degree Feedback Vertex Set parameterized by the solution size. Assuming the parameter is a constant, each dynamic graph can be updated in O(logn)O(\log n) time and can compute a solution in O(1)O(1) time. These results are obtained by another approach.Comment: SWAT 2014 to appea

    Evanescent-wave coupled right angled buried waveguide: Applications in carbon nanotube mode-locking

    Get PDF
    In this paper we present a simple but powerful subgraph sampling primitive that is applicable in a variety of computational models including dynamic graph streams (where the input graph is defined by a sequence of edge/hyperedge insertions and deletions) and distributed systems such as MapReduce. In the case of dynamic graph streams, we use this primitive to prove the following results: -- Matching: First, there exists an O~(k2)\tilde{O}(k^2) space algorithm that returns an exact maximum matching on the assumption the cardinality is at most kk. The best previous algorithm used O~(kn)\tilde{O}(kn) space where nn is the number of vertices in the graph and we prove our result is optimal up to logarithmic factors. Our algorithm has O~(1)\tilde{O}(1) update time. Second, there exists an O~(n2/α3)\tilde{O}(n^2/\alpha^3) space algorithm that returns an α\alpha-approximation for matchings of arbitrary size. (Assadi et al. (2015) showed that this was optimal and independently and concurrently established the same upper bound.) We generalize both results for weighted matching. Third, there exists an O~(n4/5)\tilde{O}(n^{4/5}) space algorithm that returns a constant approximation in graphs with bounded arboricity. -- Vertex Cover and Hitting Set: There exists an O~(kd)\tilde{O}(k^d) space algorithm that solves the minimum hitting set problem where dd is the cardinality of the input sets and kk is an upper bound on the size of the minimum hitting set. We prove this is optimal up to logarithmic factors. Our algorithm has O~(1)\tilde{O}(1) update time. The case d=2d=2 corresponds to minimum vertex cover. Finally, we consider a larger family of parameterized problems (including bb-matching, disjoint paths, vertex coloring among others) for which our subgraph sampling primitive yields fast, small-space dynamic graph stream algorithms. We then show lower bounds for natural problems outside this family

    Dynamic Multilevel Graph Visualization

    Full text link
    We adapt multilevel, force-directed graph layout techniques to visualizing dynamic graphs in which vertices and edges are added and removed in an online fashion (i.e., unpredictably). We maintain multiple levels of coarseness using a dynamic, randomized coarsening algorithm. To ensure the vertices follow smooth trajectories, we employ dynamics simulation techniques, treating the vertices as point particles. We simulate fine and coarse levels of the graph simultaneously, coupling the dynamics of adjacent levels. Projection from coarser to finer levels is adaptive, with the projection determined by an affine transformation that evolves alongside the graph layouts. The result is a dynamic graph visualizer that quickly and smoothly adapts to changes in a graph.Comment: 21 page
    corecore