60,429 research outputs found
Dynamic Adaptive Point Cloud Streaming
High-quality point clouds have recently gained interest as an emerging form
of representing immersive 3D graphics. Unfortunately, these 3D media are bulky
and severely bandwidth intensive, which makes it difficult for streaming to
resource-limited and mobile devices. This has called researchers to propose
efficient and adaptive approaches for streaming of high-quality point clouds.
In this paper, we run a pilot study towards dynamic adaptive point cloud
streaming, and extend the concept of dynamic adaptive streaming over HTTP
(DASH) towards DASH-PC, a dynamic adaptive bandwidth-efficient and view-aware
point cloud streaming system. DASH-PC can tackle the huge bandwidth demands of
dense point cloud streaming while at the same time can semantically link to
human visual acuity to maintain high visual quality when needed. In order to
describe the various quality representations, we propose multiple thinning
approaches to spatially sub-sample point clouds in the 3D space, and design a
DASH Media Presentation Description manifest specific for point cloud
streaming. Our initial evaluations show that we can achieve significant
bandwidth and performance improvement on dense point cloud streaming with minor
negative quality impacts compared to the baseline scenario when no adaptations
is applied.Comment: 6 pages, 23rd ACM Packet Video (PV'18) Workshop, June 12--15, 2018,
Amsterdam, Netherland
Evaluation of HTTP/DASH Adaptation Algorithms on Vehicular Networks
Video streaming currently accounts for the majority of Internet traffic. One
factor that enables video streaming is HTTP Adaptive Streaming (HAS), that
allows the users to stream video using a bit rate that closely matches the
available bandwidth from the server to the client. MPEG Dynamic Adaptive
Streaming over HTTP (DASH) is a widely used standard, that allows the clients
to select the resolution to download based on their own estimations. The
algorithm for determining the next segment in a DASH stream is not partof the
standard, but it is an important factor in the resulting playback quality.
Nowadays vehicles are increasingly equipped with mobile communication devices,
and in-vehicle multimedia entertainment systems. In this paper, we evaluate the
performance of various DASH adaptation algorithms over a vehicular network. We
present detailed simulation results highlighting the advantages and
disadvantages of various adaptation algorithms in delivering video content to
vehicular users, and we show how the different adaptation algorithms perform in
terms of throughput, playback interruption time, and number of interruptions
Streaming Video QoE Modeling and Prediction: A Long Short-Term Memory Approach
HTTP based adaptive video streaming has become a popular choice of streaming
due to the reliable transmission and the flexibility offered to adapt to
varying network conditions. However, due to rate adaptation in adaptive
streaming, the quality of the videos at the client keeps varying with time
depending on the end-to-end network conditions. Further, varying network
conditions can lead to the video client running out of playback content
resulting in rebuffering events. These factors affect the user satisfaction and
cause degradation of the user quality of experience (QoE). It is important to
quantify the perceptual QoE of the streaming video users and monitor the same
in a continuous manner so that the QoE degradation can be minimized. However,
the continuous evaluation of QoE is challenging as it is determined by complex
dynamic interactions among the QoE influencing factors. Towards this end, we
present LSTM-QoE, a recurrent neural network based QoE prediction model using a
Long Short-Term Memory (LSTM) network. The LSTM-QoE is a network of cascaded
LSTM blocks to capture the nonlinearities and the complex temporal dependencies
involved in the time varying QoE. Based on an evaluation over several publicly
available continuous QoE databases, we demonstrate that the LSTM-QoE has the
capability to model the QoE dynamics effectively. We compare the proposed model
with the state-of-the-art QoE prediction models and show that it provides
superior performance across these databases. Further, we discuss the state
space perspective for the LSTM-QoE and show the efficacy of the state space
modeling approaches for QoE prediction
Design and evaluation of a DASH-compliant second screen video player for live events in mobile scenarios
The huge diffusion of mobile devices is rapidly changing the way multimedia content is consumed. Mobile devices are often used as a second screen, providing complementary information on the content shown on the primary screen, as different camera angles in case of a sport event. The introduction of multiple camera angles poses many challenges with respect to guaranteeing a high Quality of Experience to the end user, especially when the live aspect, different devices and highly variable network conditions typical of mobile environments come into play. Due to the ability of HTTP Adaptive Streaming (HAS) protocols to dynamically adapt to bandwidth fluctuations, they are especially suited for the delivery of multimedia content in mobile environments. In HAS, each video is temporally segmented and stored in different quality levels. Rate adaptation heuristics, deployed at the video player, allow the most appropriate quality level to be dynamically requested, based on the current network conditions. Recently, a standardized solution has been proposed by the MPEG consortium, called Dynamic Adaptive Streaming over HTTP (DASH). We present in this paper a DASH-compliant iOS video player designed to support research on rate adaptation heuristics for live second screen scenarios in mobile environments. The video player allows to monitor the battery consumption and CPU usage of the mobile device and to provide this information to the heuristic. Live and Video-on-Demand streaming scenarios and real-time multi-video switching are supported as well. Quantitative results based on real 3G traces are reported on how the developed prototype has been used to benchmark two existing heuristics and to analyse the main aspects affecting battery lifetime in mobile video streaming
- …
