134,851 research outputs found
The effect of migrating dune forms on the flow field of an alluvial river
The bed of an alluvial river is highly susceptible to changes during the course of its existence. Besides variations of the large scale topography and plan form of the river, smaller scale dune forms can be observed. These recurring dune forms migrate on top of the large scale topography and can yield local yet important variations in the flow field. In order to study the effect of migrating dune forms on the flow characteristics and consequently the erosive capacity of an alluvial river, an experiment with mobile bed has been carried out in a laboratory flume representing a sharp meander bend. In this experiment, changes to an initially flat, slightly sloped river bed under a steady flow and sediment discharge were observed until a recurring pattern of migrating dune forms could be seen on top of the characteristic pool-bar topography of meander bends. Once the dune forms were established, an Acoustic Doppler Velocity Profiler (ADVP) was placed in several positions alongside the river bend and used to measure the flow depth and flow characteristics under the influence of the passing dunes. Several times during the experiment, the topography was mapped using laser altimetry on a grid of large spatial resolution in order to isolate the dune forms from the large scale topography and determine the dune characteristics and the dune celerity. In this paper the large scale topography and dune characteristics will be shown and the effect of the migrating dune forms on the flow field and the erosive capacity will be discussed in detail
Experiment Simulation Configurations Used in DUNE CDR
The LBNF/DUNE CDR describes the proposed physics program and experimental
design at the conceptual design phase. Volume 2, entitled The Physics Program
for DUNE at LBNF, outlines the scientific objectives and describes the physics
studies that the DUNE collaboration will perform to address these objectives.
The long-baseline physics sensitivity calculations presented in the DUNE CDR
rely upon simulation of the neutrino beam line, simulation of neutrino
interactions in the far detector, and a parameterized analysis of detector
performance and systematic uncertainty. The purpose of this posting is to
provide the results of these simulations to the community to facilitate
phenomenological studies of long-baseline oscillation at LBNF/DUNE.
Additionally, this posting includes GDML of the DUNE single-phase far detector
for use in simulations. DUNE welcomes those interested in performing this work
as members of the collaboration, but also recognizes the benefit of making
these configurations readily available to the wider community.Comment: 9 pages, 4 figures, configurations in ancillary file
Stochastics of bedform dimensions
Often river dunes are considered as regular bed patterns, with a mean dune height and a mean dune length. In reality however, river dunes are threedimensional and irregular features that cannot be fully described by their mean values. In fact, dune dimensions can be considered as stochastic variables. Their probability distribution can be characterized by a mean value and variance. The stochastic properties of dune dimensions are relevant for (see e.g. Van der Mark et al., 2005):\ud
• Shipping - highest crests\ud
• Pipelines & cables - deepest troughs\ud
• Modelling cross-strata sets - troughs, dune heights\ud
• Modelling vertical sorting - troughs\ud
• Modelling bed roughness - dune heights\ud
In the present research the stochastics of crest elevation, trough elevation and dune height are investigated by analysing three sets of flume experiments
The dune size distribution and scaling relations of barchan dune fields
Barchan dunes emerge as a collective phenomena involving the generation of
thousands of them in so called barchan dune fields. By measuring the size and
position of dunes in Moroccan barchan dune fields, we find that these dunes
tend to distribute uniformly in space and follow an unique size distribution
function. We introduce an analyticalmean-field approach to show that this
empirical size distribution emerges from the interplay of dune collisions and
sand flux balance, the two simplest mechanisms for size selection. The
analytical model also predicts a scaling relation between the fundamental
macroscopic properties characterizing a dune field, namely the inter-dune
spacing and the first and second moments of the dune size distribution.Comment: 6 pages, 4 figures. Submitted for publicatio
Craters as sand traps: Dynamics, history, and morphology of modern sand transport in an active Martian dune field
Aeolian transport of sand is abundant on modern-day Mars, as revealed by remote sensing measurements of the motion of dunes, and of the meter-scale ripples that mantle them. We study a large-scale natural sand trap within the Meroe Patera dune field: a 1.8-km diameter crater which features a dune-free “shadow” in its lee. We compare the volume of sand trapped within this crater to the sand volume that would be expected to cover the area of the crater and its dune-free shadow behind it if the crater were not present. We find that the crater holds less sand than this “missing” volume would predict, implying that sand escapes from the crater over time. Modern day imagery shows an apparent lack of sand escaping from the Meroe crater, however, suggesting that changes in the wind regime at the site may have allowed sand to escape in the past. The persistence of an altered dune morphology all the way to the far downwind edge of the dune field suggests consistent wind conditions over the time of the crater-dune field interaction
When dunes move together, structure of deserts emerges
Crescent shaped barchan dunes are highly mobile dunes that are usually
presented as a prototypical model of sand dunes. Although they have been
theoretically shown to be unstable when considered separately, it is well known
that they form large assemblies in desert. Collisions of dunes have been
proposed as a mechanism to redistribute sand between dunes and prevent the
formation of heavily large dunes, resulting in a stabilizing effect in the
context of a dense barchan field. Yet, no models are able to explain the
spatial structures of dunes observed in deserts. Here, we use an agent-based
model with elementary rules of sand redistribution during collisions to access
the full dynamics of very large barchan dune fields. Consequently, stationnary,
out of equilibrium states emerge. Trigging the dune field density by a sand
load/lost ratio, we show that large dune fields exhibit two assymtotic regimes:
a dilute regime, where sand dune nucleation is needed to maintain a dune field,
and a dense regime, where dune collisions allow to stabilize the whole dune
field. In this dense regime, spatial structures form: the dune field is
structured in narrow corridors of dunes extending in the wind direction, as
observed in dense barchan deserts
Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars
High-Resolution Imaging Science Experiment (HiRISE) imagery of the central Olympia Undae Dune Field in the north polar region of Mars shows a reticulate dune pattern consisting of two sets of nearly orthogonal dune crestlines, with apparent slipfaces on the primary crests, ubiquitous wind ripples, areas of coarse-grained wind ripples, and deflated interdune areas. Geomorphic evidence and dune field pattern analysis of dune crest length, spacing, defect density, and orientation indicates that the pattern is complex, representing two constructional generations of dunes. The oldest and best-organized generation forms the primary crestlines and is transverse to circumpolar easterly winds. Gross bed form-normal analysis of the younger pattern of crestlines indicates that it emerged with both circumpolar easterly winds and NE winds and is reworking the older pattern. Mapping of secondary flow fields over the dunes indicates that the most recent transporting winds were from the NE. The younger pattern appears to represent an influx of sediment to the dune field associated with the development of the Olympia Cavi reentrant, with NE katabatic winds channeling through the reentrant. A model of the pattern reformation based upon the reconstructed primary winds and resulting secondary flow fields shows that the development of the secondary pattern is controlled by the boundary condition of the older dune topography
- …
