447,790 research outputs found

    Self-Dual and Complementary Dual Abelian Codes over Galois Rings

    Get PDF
    Self-dual and complementary dual cyclic/abelian codes over finite fields form important classes of linear codes that have been extensively studied due to their rich algebraic structures and wide applications. In this paper, abelian codes over Galois rings are studied in terms of the ideals in the group ring GR(pr,s)[G]{\rm GR}(p^r,s)[G], where GG is a finite abelian group and GR(pr,s){\rm GR}(p^r,s) is a Galois ring. Characterizations of self-dual abelian codes have been given together with necessary and sufficient conditions for the existence of a self-dual abelian code in GR(pr,s)[G]{\rm GR}(p^r,s)[G]. A general formula for the number of such self-dual codes is established. In the case where gcd(G,p)=1\gcd(|G|,p)=1, the number of self-dual abelian codes in GR(pr,s)[G]{\rm GR}(p^r,s)[G] is completely and explicitly determined. Applying known results on cyclic codes of length pap^a over GR(p2,s){\rm GR}(p^2,s), an explicit formula for the number of self-dual abelian codes in GR(p2,s)[G]{\rm GR}(p^2,s)[G] are given, where the Sylow pp-subgroup of GG is cyclic. Subsequently, the characterization and enumeration of complementary dual abelian codes in GR(pr,s)[G]{\rm GR}(p^r,s)[G] are established. The analogous results for self-dual and complementary dual cyclic codes over Galois rings are therefore obtained as corollaries.Comment: 22 page

    An Enumeration of the Equivalence Classes of Self-Dual Matrix Codes

    Full text link
    As a result of their applications in network coding, space-time coding, and coding for criss-cross errors, matrix codes have garnered significant attention; in various contexts, these codes have also been termed rank-metric codes, space-time codes over finite fields, and array codes. We focus on characterizing matrix codes that are both efficient (have high rate) and effective at error correction (have high minimum rank-distance). It is well known that the inherent trade-off between dimension and minimum distance for a matrix code is reversed for its dual code; specifically, if a matrix code has high dimension and low minimum distance, then its dual code will have low dimension and high minimum distance. With an aim towards finding codes with a perfectly balanced trade-off, we study self-dual matrix codes. In this work, we develop a framework based on double cosets of the matrix-equivalence maps to provide a complete classification of the equivalence classes of self-dual matrix codes, and we employ this method to enumerate the equivalence classes of these codes for small parameters

    Application of Constacyclic codes to Quantum MDS Codes

    Full text link
    Quantum maximal-distance-separable (MDS) codes form an important class of quantum codes. To get qq-ary quantum MDS codes, it suffices to find linear MDS codes CC over Fq2\mathbb{F}_{q^2} satisfying CHCC^{\perp_H}\subseteq C by the Hermitian construction and the quantum Singleton bound. If CHCC^{\perp_{H}}\subseteq C, we say that CC is a dual-containing code. Many new quantum MDS codes with relatively large minimum distance have been produced by constructing dual-containing constacyclic MDS codes (see \cite{Guardia11}, \cite{Kai13}, \cite{Kai14}). These works motivate us to make a careful study on the existence condition for nontrivial dual-containing constacyclic codes. This would help us to avoid unnecessary attempts and provide effective ideas in order to construct dual-containing codes. Several classes of dual-containing MDS constacyclic codes are constructed and their parameters are computed. Consequently, new quantum MDS codes are derived from these parameters. The quantum MDS codes exhibited here have parameters better than the ones available in the literature.Comment: 16 page

    Graph-Based Classification of Self-Dual Additive Codes over Finite Fields

    Full text link
    Quantum stabilizer states over GF(m) can be represented as self-dual additive codes over GF(m^2). These codes can be represented as weighted graphs, and orbits of graphs under the generalized local complementation operation correspond to equivalence classes of codes. We have previously used this fact to classify self-dual additive codes over GF(4). In this paper we classify self-dual additive codes over GF(9), GF(16), and GF(25). Assuming that the classical MDS conjecture holds, we are able to classify all self-dual additive MDS codes over GF(9) by using an extension technique. We prove that the minimum distance of a self-dual additive code is related to the minimum vertex degree in the associated graph orbit. Circulant graph codes are introduced, and a computer search reveals that this set contains many strong codes. We show that some of these codes have highly regular graph representations.Comment: 20 pages, 13 figure
    corecore