118,587 research outputs found
Prediction of Longitudinal White Matter Change in Healthy Elderly Individuals
Diffusion Tensor Imaging (DTI) studies have shown that significant alteration in white matter (WM) integrity differentiates healthy older adults from persons with Mild Cognitive Impairment (MCI) and Alzheimer\u27s disease (AD). Most studies, however, have been cross-sectional and have not related longitudinal DTI changes to cognitive change. Here we report changes in WM integrity and cognition in healthy older adults over an 18-month interval. Sixty-seven cognitively intact elders underwent neuropsychological testing and DTI at baseline to follow-up on the Rey Auditory Verbal Learning Test (recall sum across trials 1-5, delayed recall) and Mattis Dementia Rating Scale-2. Declining participants (N=21) showed a minimum of 1 SD reduction on at least one cognitive measure, while Stable participants (N=46) showed comparable scores at each time point. WM regions-of-interest were derived from Freesurfer. Hierarchical linear regression was used to predict fractional anisotropy (FA) change in regions frequently identified in DTI studies of MCI and AD including transentorhinal cortex, temporal lobe, and posterior cingulate. Groups did not differ at baseline in age, cognition, FA, or WM volume. After controlling for age and baseline FA, cognitive status (Declining, Stable) predicted the baseline to 18-month reduction in FA in the right hippocampal gyrus (p=.004) and left fusi-form gyrus (p=.01) with a trend in the left middle temporal gyrus (p=.06). Future research should examine WM changes in other brain regions and determine whether DTI diffusivity measures are related to cognitive decline
Diffusion Tensor Imaging for Assessment of Response to Neoadjuvant Chemotherapy in Patients With Breast Cancer.
In this study, the prognostic significance of tumor metrics derived from diffusion tensor imaging (DTI) was evaluated in patients with locally advanced breast cancer undergoing neoadjuvant therapy. DTI and contrast-enhanced magnetic resonance imaging were acquired at 1.5 T in 34 patients before treatment and after 3 cycles of taxane-based therapy (early treatment). Tumor fractional anisotropy (FA), principal eigenvalues (λ1, λ2, and λ3), and apparent diffusion coefficient (ADC) were estimated for tumor regions of interest drawn on DTI data. The association between DTI metrics and final tumor volume change was evaluated with Spearman rank correlation. DTI metrics were investigated as predictors of pathological complete response (pCR) by calculating the area under the receiver operating characteristic curve (AUC). Early changes in tumor FA and ADC significantly correlated with final tumor volume change post therapy (ρ = -0.38, P = .03 and ρ = -0.71, P < .001, respectively). Pretreatment tumor ADC was significantly lower in the pCR than in the non-pCR group (P = .04). At early treatment, patients with pCR had significantly higher percent changes of tumor λ1, λ2, λ3, and ADC than those without pCR. The AUCs for early percent changes in tumor FA and ADC were 0.60 and 0.83, respectively. The early percent changes in tumor eigenvalues and ADC were the strongest DTI-derived predictors of pCR. Although early percent change in tumor FA had a weak association with pCR, the significant correlation with final tumor volume change suggests that this metric changes with therapy and may merit further evaluation
Age related diffusion and tractography changes in typically developing pediatric cervical and thoracic spinal cord
Background and objective: Diffusion tensor imaging (DTI) and diffusion tensor tractography (DTT) are two techniques that can measure white matter integrity of the spinal cord. Recently, DTI indices have been shown to change with age. The purpose of this study is (a) to evaluate the maturational states of the entire pediatric spinal cord using DTI and DTT indices including fractional anisotropy (FA), mean diffusivity (MD), mean length of white matter fiber tracts and tract density and (b) to analyze the DTI and DTT parameters along the entire spinal cord as a function of spinal cord levels and age. Method: A total of 23 typically developing (TD) pediatric subjects ranging in age from 6 to 16 years old (11.94 ± 3.26 (mean ± standard deviation), 13 females and 10 males) were recruited, and scanned using 3.0 T MR scanner. Reduced FOV diffusion tensor images were acquired axially in the same anatomical location prescribed for the T2-weighted images to cover the entire spinal cord (C1-mid L1 levels). To mitigate motion induced artifacts, diffusion directional images were aligned with the reference image (b0) using a rigid body registration algorithm performed by in-house software developed in Matlab (MathWorks, Natick, Massachusetts). Diffusion tensor maps (FA and MD) and streamline deterministic tractography were then generated from the motion corrected DTI dataset. DTI and DTT parameters were calculated by using ROIs drawn to encapsulate the whole cord along the entire spinal cord by an independent board certified neuroradiologist. These indices then were compared between two age groups (age group A = 6–11 years (n = 11) and age group B = 12–16 years (n = 12)) based on similar standards and age definitions used for reporting spinal cord injury in the pediatric population. Standard least squared linear regression based on a restricted maximum likelihood (REML) method was used to evaluate the relationship between age and DTI and DTT parameters. Results: An increase in FA (group A = 0.42 ± 0.097, group B = 0.49 ± 0.116), white matter tract density (group A = 368.01 ± 236.88, group B = 440.13 ± 245.24) and mean length of fiber tracts (group A = 48.16 ± 20.48 mm, group B = 60.28 ± 23.87 mm) and a decrease in MD (group A = 1.06 ± 0.23 × 10−3 mm2/s, group B = 0.82 ± 0.24 × 10−3 mm2/s) were observed with age along the entire spinal cord. Statistically significant increases have been shown in FA (p = 0.004, R2 = 0.57), tract density (p = 0.0004, R2 = 0.58), mean length of fiber tracts (p \u3c 0.001, R2 = 0.5) and a significant decrease has been shown in MD (p = 0.002, R2 = 0.59) between group A and group B. Also, it has been shown DTI and DTT parameters vary along the spinal cord as a function of intervertebral disk and mid-vertebral body level. Conclusion: This study provides an initial understanding of age related changes of DTI values as well as DTT metrics of the spinal cord. The results show significant differences in DTI and DTT parameters which may result from decreasing water content, myelination of fiber tracts, and the thickening diameter of fiber tracts during the maturation process. Consequently, when quantitative DTI and DTT of the spinal cord is undertaken in the pediatric population an age and level matched normative dataset should be used to accurately interpret the quantitative results. © 201
Early diffusion evidence of retrograde transsynaptic degeneration in the human visual system
We investigated whether diffusion tensor imaging (DTI) indices of white matter integrity would offer early markers of retrograde transsynaptic degeneration (RTD) in the visual system after stroke
Objective: We investigated whether diffusion tensor imaging (DTI) indices of white matter integrity
would offer early markers of retrograde transsynaptic degeneration (RTD) in the visual system
after stroke.
Methods: We performed a prospective longitudinal analysis of the sensitivity of DTI markers of
optic tract health in 12 patients with postsynaptic visual pathway stroke, 12 stroke controls,
and 28 healthy controls. We examined group differences in (1) optic tract fractional anisotropy
(FA-asymmetry), (2) perimetric measures of visual impairment, and (3) the relationship between
FA-asymmetry and perimetric assessment.
Results: FA-asymmetry was higher in patients with visual pathway lesions than in control groups.
These differences were evident 3 months from the time of injury and did not change significantly
at 12 months. Perimetric measures showed evidence of impairment in participants with visual
pathway stroke but not in control groups. A significant association was observed between
FA-asymmetry and perimetric measures at 3 months, which persisted at 12 months.
Conclusions: DTI markers of RTD are apparent 3 months from the time of injury. This represents
the earliest noninvasive evidence of RTD in any species. Furthermore, these measures associate
with measures of visual impairment. DTI measures offer a reproducible, noninvasive, and sensitive
method of investigating RTD and its role in visual impairment
Spatial Smoothing for Diffusion Tensor Imaging with low Signal to Noise Ratios
Though low signal to noise ratio (SNR) experiments in DTI give key information about tracking and anisotropy, e.g. by measurements with very small voxel sizes, due to the complicated impact of thermal noise such experiments are up to now seldom analysed. In this paper Monte Carlo simulations are presented which investigate the random fields of noise for different DTI variables in low SNR situations. Based on this study a strategy for spatial smoothing, which demands essentially uniform noise, is derived. To construct a convenient filter the weights of the nonlinear Aurich chain are adapted to DTI. This edge preserving three dimensional filter is then validated in different variants via a quasi realistic model and is applied to very new data with isotropic voxels of the size 1x1x1 mm3 which correspond to a spatial mean SNR of approximately 3
Diffusion tensor model links to neurite orientation dispersion and density imaging at high b-value in cerebral cortical gray matter
Diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) are widely used models to infer microstructural features in the brain from diffusion-weighted MRI. Several studies have recently applied both models to increase sensitivity to biological changes, however, it remains uncertain how these measures are associated. Here we show that cortical distributions of DTI and NODDI are associated depending on the choice of b-value, a factor reflecting strength of diffusion weighting gradient. We analyzed a combination of high, intermediate and low b-value data of multi-shell diffusion-weighted MRI (dMRI) in healthy 456 subjects of the Human Connectome Project using NODDI, DTI and a mathematical conversion from DTI to NODDI. Cortical distributions of DTI and DTI-derived NODDI metrics were remarkably associated with those in NODDI, particularly when applied highly diffusion-weighted data (b-value = 3000 sec/mm2). This was supported by simulation analysis, which revealed that DTI-derived parameters with lower b-value datasets suffered from errors due to heterogeneity of cerebrospinal fluid fraction and partial volume. These findings suggest that high b-value DTI redundantly parallels with NODDI-based cortical neurite measures, but the conventional low b-value DTI is hard to reasonably characterize cortical microarchitecture
Medium-Energy Gamma-Ray Astrophysics with the 3-DTI Gamma-Ray Telescope
Gamma-ray observations in the medium energy range (0.50-50.0 MeV) are central to unfolding many outstanding questions in astrophysics. The challenges of medium-energy gamma-ray observations, however, are the low photon statistics and large backgrounds. We review these questions, address the telescope technology requirements, and describe our development of the 3-Dimensional Track Imaging (3-DTI) Compton telescope and its performance for a new mediumenergy gamma-ray mission. The 3-DTI is a large-volume time projection chamber (TPC) with a 2-dimensional gas micro-well detector (MWD) readout
- …
