1,749 research outputs found

    Characterizing Driving Context from Driver Behavior

    Full text link
    Because of the increasing availability of spatiotemporal data, a variety of data-analytic applications have become possible. Characterizing driving context, where context may be thought of as a combination of location and time, is a new challenging application. An example of such a characterization is finding the correlation between driving behavior and traffic conditions. This contextual information enables analysts to validate observation-based hypotheses about the driving of an individual. In this paper, we present DriveContext, a novel framework to find the characteristics of a context, by extracting significant driving patterns (e.g., a slow-down), and then identifying the set of potential causes behind patterns (e.g., traffic congestion). Our experimental results confirm the feasibility of the framework in identifying meaningful driving patterns, with improvements in comparison with the state-of-the-art. We also demonstrate how the framework derives interesting characteristics for different contexts, through real-world examples.Comment: Accepted to be published at The 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL 2017

    Driving Context into Text-to-Text Privatization

    Full text link
    \textit{Metric Differential Privacy} enables text-to-text privatization by adding calibrated noise to the vector of a word derived from an embedding space and projecting this noisy vector back to a discrete vocabulary using a nearest neighbor search. Since words are substituted without context, this mechanism is expected to fall short at finding substitutes for words with ambiguous meanings, such as \textit{'bank'}. To account for these ambiguous words, we leverage a sense embedding and incorporate a sense disambiguation step prior to noise injection. We encompass our modification to the privatization mechanism with an estimation of privacy and utility. For word sense disambiguation on the \textit{Words in Context} dataset, we demonstrate a substantial increase in classification accuracy by 6.05%6.05\%

    Effects of the driving context on the usage of Automated Driver Assistance Systems (ADAS) -Naturalistic Driving Study for ADAS evaluation

    Get PDF
    Automated Driver Assistance Systems (ADAS) are designed to support the driver and enhance the driving experience. Due to ADAS limitations associated with the driving context, the intended use of ADAS functions is often non-transparent for the end-user. The system performance capabilities affected by the continuously changing driving context influence ADAS usage. However, the cumulative effect of the driving context on driver behavior and ADAS usage is insufficiently covered in the ongoing research. This paper aims to investigate and understand how the driving context affects the use of ADAS. Throughout this research, data from a Naturalistic Driving (ND) study was collected and analyzed. The analysis of the ND data helped to register how drivers use ADAS in different driving conditions and indicated several issues associated with ADAS usage. To be able to clarify the outcomes of quantitative sensor-based data analysis, an explanatory sequential mixed-method design was implemented. The method facilitated the subsequent design of qualitative in-depth interviews with the drivers. The combined data analysis allowed a holistic interpretation and evaluation of the findings regarding the effect of the driving context on ADAS usage. The findings warrant consideration of the driving context as a key factor enabling the effective development of ADAS functions.\ua0\ua9 2020 The Author

    Assessing Crash Risks on Curves

    Get PDF
    In Queensland, curve related crashes contributed to 63.44% of fatalities, and 25.17% required hospitalisation. In addition, 51.1% of run-off-road crashes occurred on obscured or open-view road curves (Queensland Transport, 2006). This paper presents a conceptual framework for an in-vehicle system, which assesses crash risk when a driver is manoeuvring on a curve. Our approach consists of using Intelligent Transport Systems (ITS) to collect information about the driving context. The driving context corresponds to information about the environment, driver, and vehicle gathered from sensor technology. Sensors are useful to detect drivers’ high-risk situations such as curves, fogs, drivers’ fatigue or slippery roads. However, sensors can be unreliable, and therefore the information gathered from them can be incomplete or inaccurate. In order to improve the accuracy, a system is built to perform information fusion from past and current driving information. The integrated information is analysed using ubiquitous data mining techniques and the results are later used in a Coupled Hidden Markov Model (CHMM), to learn and classify the information into different risk categories. CHMM is used to predict the probability of crash on curves. Based on the risk assessment, our system provides appropriate intervention to the driver. This approach could allow the driver to have sufficient time to react promptly. Hence, this could potentially promote safe driving and decrease curve related injuries and fatalities

    A comparison among deep learning techniques in an autonomous driving context

    Get PDF
    Al giorno d’oggi, l’intelligenza artificiale è uno dei campi di ricerca che sta ricevendo sempre più attenzioni. Il miglioramento della potenza computazionale a disposizione dei ricercatori e sviluppatori sta rinvigorendo tutto il potenziale che era stato espresso a livello teorico agli albori dell’Intelligenza Artificiale. Tra tutti i campi dell’Intelligenza Artificiale, quella che sta attualmente suscitando maggiore interesse è la guida autonoma. Tantissime case automobilistiche e i più illustri college americani stanno investendo sempre più risorse su questa tecnologia. La ricerca e la descrizione dell’ampio spettro delle tecnologie disponibili per la guida autonoma è parte del confronto svolto in questo elaborato. Il caso di studio si incentra su un’azienda che partendo da zero, vorrebbe elaborare un sistema di guida autonoma senza dati, in breve tempo ed utilizzando solo sensori fatti da loro. Partendo da reti neurali e algoritmi classici, si è arrivati ad utilizzare algoritmi come A3C per descrivere tutte l’ampio spettro di possibilità. Le tecnologie selezionate verranno confrontate in due esperimenti. Il primo è un esperimento di pura visione artificiale usando DeepTesla. In questo esperimento verranno confrontate tecnologie quali le tradizionali tecniche di visione artificiale, CNN e CNN combinate con LSTM. Obiettivo è identificare quale algoritmo ha performance migliori elaborando solo immagini. Il secondo è un esperimento su CARLA, un simulatore basato su Unreal Engine. In questo esperimento, i risultati ottenuti in ambiente simulato con CNN combinate con LSTM, verranno confrontati con i risultati ottenuti con A3C. Obiettivo sarà capire se queste tecniche sono in grado di muoversi in autonomia utilizzando i dati forniti dal simulatore. Il confronto mira ad identificare le criticità e i possibili miglioramenti futuri di ciascuno degli algoritmi proposti in modo da poter trovare una soluzione fattibile che porta ottimi risultati in tempi brevi

    Modeling political belief and its propagation, with Malaysia as a driving context

    Get PDF
    "We discuss in this paper an agent-based simulation model that describes the propagation of political belief in Malaysia. Worldview map is used as the representational scheme for political belief. Inter-agent interaction propagates the belief throughout the agent population, subject to similarity of emotion between the interacting agents and their distances apart, and various attributes of the individual agents. Media broadcast may be used by agents in their attempt to extend their reach. Computational experiments made using the model point to its plausibility. Further, it highlights, for the ruling coalition, the importance of both a strong political propaganda machinery and a strong governance in winning the hearts and minds of the electorate." (author's abstract

    A Crash Risk Assessment Model for Road Curves

    Get PDF
    A comprehensive model to assess crash risks and reduce driver’s exposure to risks on road curves is still unavailable. We aim to create a model that can assist a driver to negotiate road curves safely. The overall model uses situation awareness, ubiquitous data mining and driver behaviour modelling concepts to assess crash risks on road curves. However, only the risk assessment model, which is part of the overall model, is presented in the paper. Crash risks are assessed using the predictions and a risk assessment scale that is created based on driver behaviours on road curves. This paper identifies the contributing factors from which we assess crash risk level. Five risk levels are defined and the contributing factors for each crash risk level are used to determine risk. The contributing factors are identified from a set of insurance crash records using link analysis. The factors will be compared with the actual factors of the driving context in order to determine the risk level

    Car that Knows Before You Do: Anticipating Maneuvers via Learning Temporal Driving Models

    Full text link
    Advanced Driver Assistance Systems (ADAS) have made driving safer over the last decade. They prepare vehicles for unsafe road conditions and alert drivers if they perform a dangerous maneuver. However, many accidents are unavoidable because by the time drivers are alerted, it is already too late. Anticipating maneuvers beforehand can alert drivers before they perform the maneuver and also give ADAS more time to avoid or prepare for the danger. In this work we anticipate driving maneuvers a few seconds before they occur. For this purpose we equip a car with cameras and a computing device to capture the driving context from both inside and outside of the car. We propose an Autoregressive Input-Output HMM to model the contextual information alongwith the maneuvers. We evaluate our approach on a diverse data set with 1180 miles of natural freeway and city driving and show that we can anticipate maneuvers 3.5 seconds before they occur with over 80\% F1-score in real-time.Comment: ICCV 2015, http://brain4cars.co
    • …
    corecore